
Telecommunications and 
information exchange between 
systems — Recursive inter-network 
architecture —
Part 3: 
Common distributed application 
protocol
Télécommunications et échange d'information entre systèmes — 
Architecture récursive inter-réseaux —
Partie 3: Protocole pour les applications distribuées CDAP

INTERNATIONAL 
STANDARD

ISO/IEC 
4396-3

First edition 
2023-12

Reference number 
ISO/IEC 4396-3:2023(E)

© ISO/IEC 2023

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ii

ISO/IEC 4396-3:2023(E)

COPYRIGHT PROTECTED DOCUMENT

©  ISO/IEC 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may 
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on 
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below 
or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

   © ISO/IEC 2023 – All rights reserved
 

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://www.iso.org
https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

Foreword ..........................................................................................................................................................................................................................................v
Introduction .............................................................................................................................................................................................................................. vi
1 Scope ................................................................................................................................................................................................................................. 1
2 Normative references ..................................................................................................................................................................................... 1
3	 Terms	and	definitions .................................................................................................................................................................................... 1
4 Description of CDAP ......................................................................................................................................................................................... 3

4.1 CDAP –RINA application protocol ......................................................................................................................................... 3
4.2 Application entities (AEs) within applications .......................................................................................................... 3
4.3 Objects ........................................................................................................................................................................................................... 4
4.4 Method calls on objects .................................................................................................................................................................. 4
4.5 Object model ............................................................................................................................................................................................. 4
4.6 Application connection ................................................................................................................................................................... 5
4.7 Application connection state vector (ACSV) ................................................................................................................ 5
4.8 Requestor and responder roles ............................................................................................................................................... 5
4.9 Validation of values/operations by CDAP ....................................................................................................................... 5
4.10 CDAP application programming interface (API) ...................................................................................................... 6
4.11 Standardization and policies ..................................................................................................................................................... 6

5	 Specification ............................................................................................................................................................................................................. 6
5.1 CDAP profile — Policies and standardization ............................................................................................................ 6
5.2 Application connection establishment .............................................................................................................................. 7
5.3 Application connection state vector (ACSV) ................................................................................................................ 7
5.4 Objects and the object model ..................................................................................................................................................... 9

5.4.1 Object properties ............................................................................................................................................................... 9
5.4.2 Object model definition ................................................................................................................................................ 9
5.4.3 Object model version ................................................................................................................................................... 10
5.4.4 Object class ........................................................................................................................................................................... 10
5.4.5 Object name ......................................................................................................................................................................... 10
5.4.6 Object ID — Shorthand name alias ................................................................................................................. 11

5.5 Messages and replies ...................................................................................................................................................................... 11
5.6 Message encoding ............................................................................................................................................................................. 11
5.7 Methods on objects .......................................................................................................................................................................... 12
5.8 CDAP message ...................................................................................................................................................................................... 12

5.8.1 General ..................................................................................................................................................................................... 12
5.8.2 Opcode ...................................................................................................................................................................................... 15
5.8.3 InvokeID .................................................................................................................................................................................. 15
5.8.4 ObjName, ObjID ................................................................................................................................................................. 16
5.8.5 ObjNameParent, ObjIDParent .............................................................................................................................. 16
5.8.6 ObjClass ................................................................................................................................................................................... 17
5.8.7 ObjValue .................................................................................................................................................................................. 17
5.8.8 Result and ResultReason ......................................................................................................................................... 18
5.8.9 Scope and filter ................................................................................................................................................................. 18
5.8.10 Flags ............................................................................................................................................................................................ 19

5.9 Object identification in messages ....................................................................................................................................... 19
5.10 CDAP message/method Ttpes ................................................................................................................................................ 20

5.10.1 Object creation: CREATE(_R), DELETE(_R) ............................................................................................. 20
5.10.2 Object Read: READ(_R), CANCELREAD(_R) ............................................................................................ 20
5.10.3 Object Write: WRITE(_R) ......................................................................................................................................... 21
5.10.4 Object Stop/Start: START(_R), STOP(_R) ................................................................................................... 22

6 Policies .........................................................................................................................................................................................................................22
6.1 General ........................................................................................................................................................................................................ 22
6.2 POL-CDAP-CSYNTAX — Concrete syntax ................................................................................................................... 22

6.2.1 General ..................................................................................................................................................................................... 22

iii© ISO/IEC 2023 – All rights reserved  

Contents Page

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

6.2.2 Default ....................................................................................................................................................................................... 23
6.3 POL-CDAP-AUTH — Authentication ................................................................................................................................. 23

6.3.1 General ..................................................................................................................................................................................... 23
6.3.2 Default ....................................................................................................................................................................................... 23

6.4 POL-CDAP-ORDERING — Order of execution of method calls ................................................................. 23
6.4.1 General ..................................................................................................................................................................................... 23
6.4.2 Default ....................................................................................................................................................................................... 24

6.5 POL-CDAP-OBJECTMODEL — Overall object model definition ................................................................ 24
6.5.1 General ..................................................................................................................................................................................... 24
6.5.2 POL-CDAP-OBJ-VERSION — Object model version ........................................................................... 24
6.5.3 POL-CDAP-OBJ-VISIBILITY — RIB objects visible to this AC................................................... 25
6.5.4 POL-CDAP-OBJ-NAMING — Object naming convention ............................................................... 25
6.5.5 POL-CDAP-OBJ-ObjRef — Use of ObjName/ObjID to edentify objects ............................. 26
6.5.6 POL-CDAP-OBJ-OBJCREATE — Object creation................................................................................... 26
6.5.7 POL-CDAP-OBJ-Types — Scalar types .......................................................................................................... 28
6.5.8 POL-CDAP-OBJ-CLASSES — Defined classes .......................................................................................... 29
6.5.9 POL-CDAP-OBJ-METHODS — Object methods ...................................................................................... 29
6.5.10 POL-CDAP-OBJ-ObjID — ObjID values .......................................................................................................... 29
6.5.11 POL-CDAP-OBJ-INITIAL — Pre-defined objects ................................................................................. 30

6.6 POL-CDAP-ERROR — Error handling and return values .............................................................................. 30
6.6.1 General ..................................................................................................................................................................................... 30
6.6.2 Default ....................................................................................................................................................................................... 30

6.7 POL-CDAP-InvokeID — Convention for assigning InvokeID values ..................................................... 32
6.7.1 General ..................................................................................................................................................................................... 32
6.7.2 Default ....................................................................................................................................................................................... 32

6.8 POL-CDAP-READINCOMPLETE — Use of incomplete READ_R ................................................................ 33
6.8.1 General ..................................................................................................................................................................................... 33
6.8.2 Default ....................................................................................................................................................................................... 33

6.9 POL-CDAP-SCOPEFILTER — Scope and filter policy ......................................................................................... 33
6.9.1 General ..................................................................................................................................................................................... 33
6.9.2 Default .......................................................................................................................................................................................34

6.10 POL-CDAP-ACSVContents — ACSV contents .............................................................................................................34
6.10.1 General .....................................................................................................................................................................................34
6.10.2 Default .......................................................................................................................................................................................34

7 CDAP context notes ........................................................................................................................................................................................34
7.1 General ........................................................................................................................................................................................................34
7.2 RIB Daemon model ........................................................................................................................................................................... 34
7.3 Distributed applications ............................................................................................................................................................. 35

Annex A (informative)  Google Protocol Buffers™ (GPB) concrete syntax ...............................................................39
Annex B (informative)  JSON concrete syntax .........................................................................................................................................42
Bibliography ............................................................................................................................................................................................................................ 44

iv    © ISO/IEC 2023 – All rights reserved
 

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are 
members of ISO or IEC participate in the development of International Standards through technical 
committees established by the respective organization to deal with particular fields of technical 
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international 
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the 
work.

The procedures used to develop this document and those intended for its further maintenance 
are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria 
needed for the different types of document should be noted. This document was drafted in 
accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or 
www.iec.ch/members_experts/refdocs).

ISO and IEC draw attention to the possibility that the implementation of this document may involve 
the use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability 
of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO and 
IEC had received notice of (a) patent(s) which may be required to implement this document. However, 
implementers are cautioned that this may not represent the latest information, which may be obtained 
from the patent database available at www.iso.org/patents and https://patents.iec.ch. ISO and IEC shall 
not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and 
expressions related to conformity assessment, as well as information about ISO's adherence to 
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see 
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, 
Subcommittee SC 6 Telecommunications and information exchange between systems.

A list of all parts in the ISO/IEC 4396 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards 
body. A complete listing of these bodies can be found at www.iso.org/members.html and 
www.iec.ch/national-committees.

v© ISO/IEC 2023 – All rights reserved  

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
http://www.iso.org/patents
https://patents.iec.ch/iec/pa.nsf/pa_h.xsp?v=0
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

Introduction

The common distributed application protocol (CDAP) is used by communicating recursive inter-network 
architecture (RINA) applications to exchange application-specific data and effect remote actions. CDAP 
implements the protocol messages and state machines to allow the two endpoints of a communication 
flow to exchange read/write, start/stop, and create/delete method invocations on remote “objects”. 
The semantics of those objects and operations are opaque to the CDAP protocol itself. Because CDAP 
is not specific to RINA, it can be used by any distributed application that needs to share information or 
initiate state changes with another application over a network. CDAP is used in the RINA architecture 
by applications, and specifically by inter-process communication (IPC) Processes, which are specialized 
applications that cooperate to create a Distributed IPC Facility (DIF) that provides network transport 
to other applications.

vi    © ISO/IEC 2023 – All rights reserved
 

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


INTERNATIONAL STANDARD ISO/IEC 4396-3:2023(E)

Telecommunications and information exchange between 
systems — Recursive inter-network architecture —

Part 3: 
Common distributed application protocol

1 Scope

This document provides the common distributed application protocol (CDAP) specification. CDAP 
enables distributed applications to deal with communications at an object level, rather than forcing 
applications to explicitly deal with serialization and input/output operations. CDAP provides 
the application protocol component of a distributed application facility (DAF). CDAP provides a 
straightforward and unifying approach to sharing data over a network without having to create 
specialized protocols.

This document provides:

— an overview of CDAP;

— the specification of CDAP;

— a description of policies, in the specific sense introduced in the text;

— notes on the context of CDAP.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content 
constitutes requirements of this document. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 4396-1, Telecommunications and information exchange between systems – Recursive Inter-
Network Architecture — Part 1: RINA Reference Model

3	 Terms	and	definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 4396-1, and the following 
apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https:// www .iso .org/ obp

— IEC Electropedia: available at https:// www .electropedia .org/ 

3.1
application object model
common distributed application protocol (CDAP) object model used in the application connection (AC) 
data transfer phase.

Note 1 to entry: If an AE is capable of supporting multiple object models, this selects the one to be used for this 
AC. If not, the requested object model value should match that of the sole implemented model.

1© ISO/IEC 2023 – All rights reserved  

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://www.iso.org/obp
https://www.electropedia.org/
https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

3.2
CDAP message encoding rules
encoding of bits sent for all CDAP messages in an application connection

Note 1 to entry: The concrete syntax to be used for the AC is determined by the Common Application Connection 
Establishment Phase (CACEP) and provided to the CDAP data phase in the application connection state vector 
(ACSV).

3.3
CDAP policy
CDAP implementation option where something can be done in multiple ways, and no single choice is 
mandated

Note 1 to entry: CDAP implementers should make a choice of how to implement every CDAP policy; recommended 
policies are provided in this document.

3.4
CDAP	profile
specific and complete definition of all the policies in CDAP and the object model that should be 
implemented as described in order to create a conforming, compatible implementation

3.5
CDAP syntax version
abstract syntax
integer that indicates version of abstract syntax used

3.6
method call
request for the recipient application-entity (AE) to make a call to a method (function) specific to an 
object

3.7
object
named conceptual data entity residing within the resource information base (RIB) view made available 
to an application connection (AC) by the application

Note 1 to entry: Objects have a class (type), a name and possibly an interchangeable ObjectID (OID), and a value. 
The object [in an unspecified way, as object/class models and inheritance are unspecified by common distributed 
application protocol (CDAP)] provides a set of methods (functions) that correspond to the CDAP message types, 
which can become the targets of method calls on that object during the data transfer phase of the AC.

3.8
object method
method (function) associated with an object that will be invoked by receipt of a corresponding CDAP 
message

3.9
object model
entire set of objects available to an application connection (AC) and their collective relationships and 
behavioursNote 1 to entry: The object model to be used for an AC is selected by the Application 
Object Model variable set during the Common Application Connection Establishment Phase (CACEP).

3.10
object model version
specific named object model used for an application connection

Note 1 to entry: Common distributed application protocol (CDAP) does not dictate the form of Object Model 
Version names/values; values are mutually agreed-upon by a priori application agreement, determined by 
Common Application Connection Establishment Phase (CACEP), and possibly made available in the application 
connection state vector (ACSV) for use by objects.

   © ISO/IEC 2023 – All rights reserved
  

2

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

3.11
policy point
place to optimize or configure a common distributed application protocol (CDAP) implementation to 
perform some operation

Note 1 to entry: Policy points have the form POL-CDAP-x.

4 Description of CDAP

4.1 CDAP –RINA application protocol

The word “application” is used in this document in a general sense. Independent application programs, 
individual instances of a distributed program, or even independent threads of a single process execution 
can be considered to be “applications” if they communicate via CDAP. In typical RINA usage, the 
“applications” are Application Entities (AEs) residing within two instances of a Distributed Application 
Process connected by a RINA flow.

The objects that CDAP operates upon are mutually-agreed-upon representations of the exposed data 
and entities between two communicating applications. CDAP does not assume that the applications 
share any directly-accessible memory, so CDAP is an example of a Remote Procedure Call protocol. 
RINA refers to the set of these known objects as a Resource Information Base (RIB), a virtual database 
of objects that the two applications are mutually aware of and able to address via CDAP.

CDAP does not assume that the RIB exposes the entire state of either application, or that the objects 
manipulated by CDAP map 1:1 onto actual state variables or entities; CDAP simply communicates 
requested operations on objects that the communicating applications choose to expose. The objects 
can actually be virtual objects synthesized for external presentation or to generate side effects; they 
can be considered to be “projections” or “views” of implementation objects, created for convenience 
or abstraction purposes. While a hierarchical tree-based organization is often used to unambiguously 
name and locate objects in a RIB, CDAP itself imposes no particular structure.

CDAP borrows from Common Management Information Protocol (CMIP) a straightforward standards-
defined protocol and shares many properties with other remote-method-invocation based protocols 
such as the Bell Labs Plan 9 “file protocol”. While known concepts are employed to benefit from 
the experience of prior implementations, the design of CDAP explicitly takes into account that 
implementations will be done in multiple languages and on various platforms of widely different scales, 
so some lowest-common-denominator choices have been adopted, and many details have been left 
undefined in the base protocol to allow tailoring CDAP implementations for their end use.

CDAP does not define a single implementation specification, but is rather a framework in which 
specific application, communication, and scale requirements can be met while still providing higher-
level application code with a consistent set of operations and behaviors. CDAP does this by providing a 
core set of mechanisms with a variable set of policies that allow but encapsulate and limit the desired 
variability. Specific instances of the set of variable aspects of the protocol, e.g. message encoding syntax, 
that are characterized in this specification as policies, can be standardized to ensure interoperability 
of different implementations. This document provides default policies as examples; in the absence of 
problems with these defaults for a specific usage, it is recommended that CDAP implementations adopt 
them to promote reuse and prevent unnecessary divergence.

4.2 Application entities (AEs) within applications

RINA defines an AE as a portion of an application that performs some distinct function. An AE 
communicates with one or more compatible AEs in other applications to accomplish a specific function 
of the application. For example, one AE in an application can deal with database access, another with 
authentication, and another with reporting and management, each of which operates over and needs 
access to a specific, and potentially distinct, set of remote data that is relevant to its function.

© ISO/IEC 2023 – All rights reserved  
 

3

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

Within each communicating application, there will be one or more AE that performs a particular 
purpose of communication, with a corresponding set of objects that have state, a usage protocol 
(i.e. legal sequences of operations on the objects), and specific semantics. In practice, AEs may be 
implemented via sub-routine libraries, threads, objects, or some other processing model, but the AE 
concept is present whether explicit or implicit.

Application connections are created between an AE instance of one application and a corresponding, 
compatible AE instance of another application. Applications may implement any number of AEs, and 
those may conduct any number of application connections, with any number of other applications.

From a security standpoint, it is important to restrict the access permissions of an AE to only those 
RIB objects relevant to its operation. While CDAP does not itself implement that separation, it provides 
applications with the information needed to do so.

4.3 Objects

All modern programming languages can implement the concept of an object that encapsulates data 
and a set of operations upon it. Properties, e.g. fundamental types, inheritance, extensibility, safety 
properties, aggregation capabilities, are richer in some languages than others. CDAP implements a 
bare-minimum model that can interface with virtually any existing object-oriented implementation 
approach. In the CDAP model, the AEs that are communicating with one another via an application 
connection share an object model that has a defined set of objects, object classes, and naming structure 
for the objects. Each object implements a specific set of method (function) calls that operate on the 
object.

4.4 Method calls on objects

CDAP messages each encode a method call, with arguments, that represents a request for a remote 
AE to perform that method call on one of its objects. A CDAP protocol implementation provides the 
mechanisms for a sequence of steps that include encoding the desired method call and its arguments 
into a message, sending the message over the RINA flow, decoding it, presenting the method call to the 
addressed object, possibly returning a result message, and completing the original method call. A goal of 
CDAP is to allow doing this sequence of steps in a common way, enabling a standardized programming 
API, in the face of different policies for, e.g. encoding syntax, implementation language, object models.

4.5 Object model

CDAP encodes read/write/start/stop/create/delete method calls on a set of objects that is specific to 
an application connection. A meaningful CDAP exchange requires that the applications agree fully upon 
the set of objects that can be addressed and their exposed properties, operations, and semantics. In 
this document, the "object model" is used to refer to the entire definition of the set of objects, including 
their class, their data description, their names and naming conventions, their interrelationships, their 
methods, their usage pattern, and their behaviors such as side-effects. An application connection is 
associated with a specific object model, determined when the application connection is established. 
An application can implement and expose, through its AEs, as many object models as appropriate to its 
purpose.

The underlying application data exposed in an object model as an “object” can actually be organized 
differently than it is presented to the other AE in the object model. These “virtual” objects may represent 
application data that needs to be aggregated, selected, computed, or iterated over in order to satisfy the 
semantics of a requested CDAP operation on the target virtual object. Any such operation is performed 
by the methods of the (virtual) objects that are exposed, not by CDAP.

Since objects and their semantics generally evolve with time, the Common Application Connection 
Establishment Phase (CACEP) protocol that is used to establish an application connection allows 
specifying at connection establishment time a “version” of the object model that will be used for the 
duration of that application connection. This makes it possible for an application to discover a potential 
incompatibility between the object model being used by the other application, and/or to have a 
vocabulary of multiple object model versions to use, and to choose the correct one to use for a particular 

   © ISO/IEC 2023 – All rights reserved
  

4

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

application connection depending on its partner application. This is especially useful during transition 
periods when an object model is being revised, and updated versions of applications that understand 
the new model are not yet fully propagated.

There is no CDAP-defined object model or set of objects that all applications using CDAP should 
implement. Object models are not part of CDAP itself.

4.6 Application connection

Application cooperation requires the applications to agree upon the syntax of the CDAP messages 
(CDAP can be encoded in multiple ways) and the object model, and further, to agree upon the privileges 
that each application grants to the other with respect to its own objects, based on identity, capabilities, 
or other security mechanism. An application connection operates within an establishment process, the 
CACEP, that authenticates the applications, determines the message syntax and object model to use, and 
provides these parameters for use in an application connection, prior to the data transfer phase where 
CDAP messages are exchanged, and operations are performed on objects.

4.7 Application connection state vector (ACSV)

The CACEP, either by message exchange, defaults, or other mutually-agreed-upon method (the specifics 
are policies of the applications and of CACEP, and are completely opaque to CDAP), determines the 
values of key application connection parameters before handing off operation on the flow to the data 
transfer phase. This information is provided to the CDAP implementation via an Application Connection 
State Vector (ACSV), which CDAP will consult when needed as it interprets messages. While the ACSV 
is not exchanged via CDAP messages and is therefore not specifically defined by the CDAP protocol, the 
contents are relevant to some policies, especially CACEP, which should provide some of the contents of 
the ACSV, and to some objects, e.g. those that should perform access permission or object model checks. 
Therefore, the ACSV is defined as a visible CDAP concept to ensure that the requirements that it places 
on CACEP and CDAP policies have a place to be made explicit.

4.8 Requestor and responder roles

Many interactions between two applications are asymmetric, such as a classic client/server exchange, 
but CDAP builds in no such constraint. The CDAP protocol is symmetric, in the sense that either side 
may make method calls via CDAP messages on objects of the other side, without regard to which side 
initiated the application connection. In this document, when the initiator of a message if referred to as 
the “requestor”, and the recipient of the message that (optionally) generates a reply as the “responder”, 
it is in the context of a specific message exchange, not the original flow or application connection 
establishment. The application AEs can have a specific role in the application connection and behave 
asymmetrically, but it is not relevant to CDAP operations.

4.9 Validation of values/operations by CDAP

The CDAP protocol provides the mechanism for communicating method calls with values, but has 
no inherent understanding of the semantics of objects or the meaning of the object fields and values. 
Those remain the responsibility of the applications and their object models and the policies they use. 
However, CDAP messages themselves have encoding and consistency requirements. Messages are 
parsed, generated, and have common operations performed on them (such as tracking replies) using 
mechanisms common to any object model, and many errors in forming or parsing CDAP messages 
are detected by those mechanisms of CDAP itself. Other semantic correctness requirements on the 
operations carried by CDAP messages, e.g. the range of a field value in a READ or WRITE message, 
are enforced by object methods; in such cases, CDAP mechanisms (such as sending a log message or 
even abandoning the application connection) may be invoked by objects to request CDAP mechanism 
assistance to respond to these errors.

To enhance the ability of objects to respond to and validate application connection specific parameters 
such as authentication, CDAP passes application connection parameters provided in the ACSV to 
object method operations for their examination. It is the responsibility of the method implementations 

© ISO/IEC 2023 – All rights reserved  
 

5

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

to validate the parameters extracted from a message, to restrict access to objects as necessary, and 
to generate and present appropriate views of objects, in accordance to the application connection 
parameters in the ACSV. For example, in many applications CACEP will have established credentials that 
may then be used to validate access permissions (CDAP’s only role in this is to provide the credentials, 
via the ACSV, to objects for use in that access validation). In practice, such common actions should be 
factored out and performed by mechanisms outside the actual object method implementations. This 
is especially important for security-related operations such as access permission validation, to avoid 
introducing a defect opportunity into every object that is expected to perform a security check.

4.10 CDAP application programming interface (API)

This document does not specify an API for generating requests or receiving replies during the CDAP 
data phase. It only defines the messages that are created and consumed by such interfaces. The CDAP 
programming API is an application implementation choice. In fact, CDAP and object operations can 
be implicit in data operations on a RIB, with no explicit CDAP API provided. However, since all CDAP 
implementations have a common set of mechanisms, a common API that operates across multiple CDAP 
variations is straightforward to create.

4.11 Standardization and policies

The purpose of standardization of a protocol is to enable interoperability. This is achieved by intentionally 
limiting flexibility, typically by choosing a specific, usually single, way that implementations should 
encode communications, define the semantics of communication exchanges, and define all aspects 
and behaviors of the objects being communicated about. When a protocol is intended for a specific 
application, freezing options and making optimized trade-off choices is both possible and necessary.

However, the CDAP protocol is intended to apply to a broad range of applications, so rather than 
narrowing it to a specific range by setting all details in concrete a priori, this specification provides a 
framework that allows defining a variety of optimized fit-for-purpose CDAP protocol implementations.

In many parts of this document an implementation choice is designated as being a policy and a name 
for the policy is provided to aid in defining and documenting specific CDAP implementations. While 
there is flexibility provided in message encoding and other aspects of CDAP itself, the vast majority 
of variability and policy decisions involve the object model (the specific objects being manipulated 
via CDAP and their behaviors), which by their nature are application-specific. When a complete set 
of policies has been specified for a specific CDAP usage, including the object model, that specification 
combined with this specification defines a CDAP Profile. Two AEs that implement the same CDAP Profile 
can communicate meaningfully. Two AEs that implement different CDAP Profiles, in general, cannot.

In order to reduce unnecessary divergence among implementations, many suggested default policy 
choices are provided. In the absence of a compelling reason (e.g. highly-constrained resources or a 
pre-existing standard that constrains some aspect of the application), these default policy choices are 
recommended to be adopted. This topic is discussed further in 5.1.

5	 Specification

5.1	 CDAP	profile	—	Policies	and	standardization

CDAP provides applications with a fixed set of methods, corresponding 1:1 to CDAP message types, to 
effect operations on remote objects via exchange of messages. In this document common properties 
of all CDAP implementations such as these are referred to as the mechanisms of the protocol. The 
mechanisms for exchange of CDAP operations are defined in this document, but the bit-level encoding 
of messages and the naming, values, types, and semantics and behaviors of the objects do not have 
a mandated single definition. These designed-in variability points are identified in this subclause 
as named policies that may vary, and are specified in detail in that context, when CDAP is used for a 
specific application. Policies can be selected to optimize a CDAP implementation for (e.g. size, speed, 
readability, flexibility, reuse, compatibility), to best serve the application needs.

   © ISO/IEC 2023 – All rights reserved
  

6

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

When defining an interoperability standard for applications that use CDAP, a CDAP Profile is defined 
and mandated as part of that standard. For every named CDAP policy point described in this document, 
a CDAP Profile specifies the policy that compliant applications will use. To encourage commonality 
across implementations, a suggested default policy is provided for each policy point; object model 
definitions should adopt the default policy unless there is a compelling reason not to do so.

5.2 Application connection establishment

Application connection establishment in the RINA architecture is performed by the CACEP as described 
in which is loosely patterned after the Association Control Service Element (ACSE) protocol. The details 
of how the CACEP phase performs its function are not relevant to CDAP itself. To operate properly, 
CDAP depends upon establishment of the necessary set of initial conditions and parameter values prior 
to commencing CDAP operations. Conceptually, and commonly in an implementation, those values are 
communicated using the ACSV described below.

The data transfer phase is entered after the CACE phase completes successfully. The application 
connection ends when either application closes the flow, or detects that the flow has closed, or the 
application informs CACEP that the application connection is complete. All application connection 
information is discarded at that time, and a CACEP phase should be performed again if it is desired to 
resume operation.

The following is a summary of the CACEP process to show how CDAP fits within the enclosing 
establishment framework. 

Steps for creation, parameter setting, and destruction of an application connection:

a) Establishment of a data flow (communication channel, or colloquially “connection”) between the 
applications.

For full functionality, CDAP requires that the flow delivers Service Data Units (SDUs) transparently, 
in-order, loss-free, and with negligible error rate. Partial functionality can still be provided if the in-
order and loss-free requirements are not met. The RINA flow allocation process with appropriate 
Quality of Service (QoS) parameters can be used to establish such a flow.

b) Establishment of parameters for an application connection.

This phase first identifies the CACEP syntax and then carries out the CACEP protocol exchange, 
which is implemented via customizable CACEP policy, that authenticates the applications to each 
other to their mutual satisfaction (the policy can range from “no authentication required” to a bi-
directional mandatory authentication). It also determines and initializes, again via CACEP policy, 
key parameters for the CDAP data phase, saving all required information in an ACSV for use by 
the AC and by RIB object methods. Fundamentally, CACEP establishes and then hands off a fully 
initialized application connection description to CDAP.

c) The application connection data transfer phase.

If the CACEP process proceeded to successful completion, the preconditions for CDAP execution 
will have been established, and AC parameters will have been stored in the ACSV. The applications 
then enter the data transfer phase of the AC in which CDAP messages are exchanged. The ACSV 
provides all necessary information for further CDAP and object operations.

d) If the CDAP AC is no longer needed, either application typically ends the AC by requesting CACEP 
to terminate it. CACEP would typically destroy the flow, but if the flow is reused, care should be 
exercised to ensure that no residual information from a previous AC persists except the flow and 
its properties.

5.3 Application connection state vector (ACSV)

The ACSV is provided to CDAP by the CACEP at the completion of the CACE phase, which begins the 
data transfer phase by invoking CDAP initialization logic with the ACSV. The CDAP initialization logic 

© ISO/IEC 2023 – All rights reserved  
 

7

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023


ISO/IEC 4396-3:2023(E)

will examine the ACSV and may choose to reject the AC and close it immediately if it is incomplete or 
inconsistent. It is recommended that the CDAP implementation provide CACEP with enough information 
to preclude initiation of an AC that cannot be supported by CDAP, or to participate with CACEP in 
negotiating the parameters. The precise contents of the ACSV are a policy of a specific CDAP Profile 
[POL-CDAP-ACSVcontents]. Contents of the ACSV may include implementation-specific information, but 
shall include at least the following fields that are referenced elsewhere in this document:

a) CDAP message encoding concrete syntax specification [type integer, value (POL-CDAP-CSYNTAX)].

CDAP messages can be encoded using any desired syntax, provided that the implementations can 
appropriately encode and decode it. The only requirement is that both applications can encode and 
decode CDAP messages using the selected syntax correctly and that the syntax can encode the full 
range of values needed for CDAP message fields and for each of the addressable objects.

b) CDAP syntax version [type integer, value (POL-CDAP-OBJ-VERSION)].

This is a value specifying which version of the CDAP specification is in use. It is solely intended to 
allow the CDAP message encoding (fields and their meanings) to evolve if necessary, and is intended 
to change only if incompatible changes should be made to the fundamental CDAP message types 
or fields. An application shall reject an AC if the Syntax Version does not correspond to a CDAP 
message syntax that it can accept and generate.

c) The flow (type flow_handle).

This is used to perform I/O operations to/from the flow. Implementations may allow the handle 
to be queried to determine, for example, the QoS parameters or other properties of the flow. For 
example, if the QoS of the underlying flow indicates that it is unreliable, the application cannot 
assume that messages will always be received, or if received that the sender will always receive a 
requested reply, so the application should limit its CDAP operations to a subset that can withstand 
such uncertainty or should terminate the AC. The specific operations available on the flow_handle 
are implementation-dependent and not specified by CDAP, but a specific capability may be implied 
by specific policies.

d) The AE name requesting the AC (type string).

This may be used by the application to further restrict or select the set of objects in the CDAP object 
model that can be operated upon by this AC [POL-CDAP-OBJ-VISIBILITY]. The meaning of this 
parameter is opaque to CDAP (CDAP’s only role is to make it available to CDAP and to method calls 
invoked via CDAP messages).

e) The Object Model to be used for the AC (type integer, value described by [POL-CDAP-OBJ-VERSION]).

In the event that multiple versions of the object model used by the AEs of the communicating 
applications exist, e.g. due to evolution of the object model, incomplete rollout of updated 
implementations, or unintentional implementation discrepancies, this value specifies which 
one the AC will use. If an AE implements a single object model, this value should match the value 
representing that model or the AC shall be terminated. This value is opaque to CDAP, it is made 
available to the method calls invoked by CDAP messages, which may adapt their behaviour to 
correspond to the version in use for the AC, but it is not examined by CDAP mechanisms.

f) Security information.

If CACEP establishes an identity or other credentials to be used in validating permission [POL-
CDAP-AUTH], this field provides privileges/identity/credentials of the other application for 
purposes of limiting the AC’s access to objects in the view. The field includes the mandatory 
Verbose. The remainder of the field, if any, is specified in [POL-CDAP-AUTH]. The Boolean value 
Verbose in this field indicates to CDAP mechanisms whether CDAP encode/decode and other 
internal CDAP operations are to return detailed information on success or errors (if the Boolean 
is TRUE), or simple SUCCESS/FAILURE return values (if the Boolean is FALSE), allowing the 
policy to control potential leakage of implementation information to less-trusted applications by 
CDAP mechanisms. The Boolean may also be referenced for the same purpose by object methods 

   © ISO/IEC 2023 – All rights reserved
  

8

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ISO/IEC 4396-3:2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

https://standards.iteh.ai/catalog/standards/sist/e2d51da7-8382-482c-bf08-ad2cdad16d7a/iso-iec-4396-3-2023

