INTERNATIONAL STANDARD

ISO 5580

Second edition

Non-destructive testing — Industrial radiographic illuminators — Minimum requirements

Essais non destructifs — Négatoscopes utilisés en radiographie industrielle — Exigences minimales

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/PRF 5580

https://standards.iteh.ai/catalog/standards/sist/ee212409-f105-4693-8612-d5a80869e812/iso-prf-5580

PROOF/ÉPREUVE

Reference number ISO 5580:2023(E)

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/PRF 5580

https://standards.iteh.ai/catalog/standards/sist/ee212409-f105-4693-8612-d5a80869e812/iso-prf-5580

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Co	ntent	T.S.	Page		
Foreword					
1	Scop)e	1		
2	Norr	native references	1		
3	Tern	ns and definitions	1		
4	Char	racteristics of radiographic illuminators	1		
	4.1	Mechanical and electrical construction	1		
	4.2	Viewing screen			
	4.3	Luminance			
	4.4	Colour of light	2		
	4.5	Diffusion of light	3		
	4.6	Uniformity of illumination			
	4.7	Disturbing light	3		
	4.8	Anti-glare device	3		
	4.9	Heating			
5	Dete	ermination of certain characteristics	3		
	5.1	General			
	5.2	Divergence and dispersion of light of diffusing screens			
	5.3	Uniformity of screen luminance	4		
	5.4	Nominal power consumption	5		
6	Mar	Nominal power consumption	5		
7	Reco	ommendations for use	5		

Document Preview

ISO/PRF 5580

https://standards.iteh.ai/catalog/standards/sist/ee212409-t105-4693-8612-d5a80869e812/iso-prt-5580

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 135, Non-destructive testing, Subcommittee SC 5, Radiographic testing, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 138, Non-destructive testing, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 5580:1985), which has been technically revised.

The main changes are as follows:

- Normative references added to <u>Clause 2</u>;
- Exact specification for luminance measurement equipment required (4.3);
- Statements on luminance control of illuminators added (4.3);
- Range of permitted light colours has been added (4.4);
- "Lamps" replaced by "Light sources", so that LEDs can be used too (7);
- "Film density" was replaced by "optical density" throughout the document;
- Minor editorial corrections.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Non-destructive testing — Industrial radiographic illuminators — Minimum requirements

1 Scope

The function of an industrial radiographic illuminator is to provide sufficient diffuse light for viewing of developed radiographic films (radiographs).

This document specifies the minimum requirements for industrial radiographic illuminators used for viewing radiographs.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CIE S 017/E, International Lighting Vocabulary, 2nd Edition

ISO/CIE 19476, Characterization of the performance of illuminance meters and luminance meters

ISO 5576, Non-destructive testing — Industrial X-ray and gamma-ray radiology — Vocabulary

3 Terms and definitions

For the purposes of this document, the terms and definitions given in CIE S 017/E and ISO 5576 apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

4 Characteristics of radiographic illuminators

4.1 Mechanical and electrical construction

An illuminator consists of the housing with one of the sides being the viewing screen illuminated from the inside. This screen can itself be the diffusing screen. This housing may also contain a system for thermal protection of the radiographs; this system may or may not be ventilated.

Generally, dry radiographs should be viewed. For possible viewing of wet radiographs in the dark room, the illuminator shall be designed to prevent penetration of the liquid if the radiograph comes into contact with the screen.

The illuminator shall guarantee the same safety of personnel as an electric apparatus with maximum voltage, insulation and earthing which is required by corresponding safety standards of electro technics in each country where these are applied.

4.2 Viewing screen

The screen shall be easy to clean and shall be made of a material which is resistant to scratching during cleaning processes recommended by the manufacturer and during film viewing.

ISO 5580:2023(E)

The screen may be a combination of elements, all of which should be resistant to heat in terms of deformation and discoloration.

The size of the screen shall allow the viewing of a radiograph without excessive glare reaching the eyes of the operator. If the illuminator is used for viewing radiographs of different sizes, internal or external covering masks shall be provided.

4.3 Luminance

The screen luminance required depends on the optical density of the radiographs. The luminance shall be measured with a luminance meter in cd/m² in accordance with ISO/CIE 19476 using a $V(\lambda)$ spectral responsivity. The following minimum screen luminance L_{\min} should be achieved for the perception of information depending on the optical density D of the illuminated radiograph.

The luminance *L* (or brightness) of the illuminated radiograph shall be:

- $L \ge 30$ cd/m² for optical densities $D \le 2.5$, i.e. $L_{min} \ge 3 * 10^{D+1}$ cd/m²;
- $L \ge 10$ cd/m² for optical densities D > 2.5, i.e. $L_{min} \ge 1 * 10^{D+1}$ cd/m²;

and, wherever possible, approximately 100 cd/m² or higher. These minimum values require the following screen luminance L_{\min} according to Table 1:

Table 1 — Minimum screen luminance L_{\min} depending on the optical density D of the radiograph

1 len Standards			
optical density	Minimum screen lumi- nance		
D	$L_{ m min}$		
	cd/m^2		
1,0	300		
1,5 ISC	/PRF 558(1 000		
ai/catalog/sta2,0ards/sist/ee	12409-f1 3 000 93-8612-		
2,5	10 000		
3,0	10 000		
3,5	30 000		
4,0	100 000		
4,5	300 000		
5,0	1 000 000		

https://standards.iteh.

At screen luminances $L_{\rm min}$ > 300 000 cd/m², the viewed radiograph will absorb so much light, that it heats up itself and will curl as a result of this single side heating by the illumination light. Viewing at such high luminance should be limited to seconds only.

The illuminator shall be equipped with a variable and continuous control of the screen luminance.

The illumination control should be realized using constant current. A pulsed current through the light source will irritate standard, non-integrating densitometer circuits resulting in wrong density measures. Pulsed current illumination control requires the application of integrating densitometers over several pulses. In this case, correct density readings at various illumination levels should be verified before usage.

4.4 Colour of light

The colour of the light used to illuminate the radiograph is normally white. The correlated colour temperature (CCT), in accordance to CIE S 017/E, shall be in the range between 2 500 K to 7 000 K.