FINAL DRAFT

TECHNICAL REPORT

ISO/DTR 18588

ISO/TC 28/SC 4

Secretariat: AFNOR

Voting begins on: **2023-05-25**

Voting terminates on:

2023-07-20

Petroleum products — Characterization of marine fuels by viscosity gravity constant

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 18588

https://standards.iteh.ai/catalog/standards/sist/73453dab-4933-44f1-af2f-44c5d6a4e619/iso-dtr-18588

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/DTR 18588:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 18588

https://standards.iteh.ai/catalog/standards/sist/73453dab-4933-44f1-af2f-44c5d6a4e619/iso-dtr-18588

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Contents					
Fore	word		iv		
Intr	oductio	on	v		
1	Scop	e	1		
2	Normative references				
3	Tern	ns and definitions	1		
4	Characterization of petroleum fuels				
	4.1	General	1		
	4.2	BMCI (or CI)			
		4.2.1 General			
		4.2.2 Calculation of BMCI (or CI)			
		4.2.3 Algorithm to calculate BMCI (or CI)	3		
	4.3	Viscosity-gravity constant			
		4.3.1 General			
		4.3.2 Calculation of VGC			
		4.3.3 Algorithm to calculate VGC	4		
5	Samples data analysis				
	5.1	General			
	5.2	BMCI versus VGC and density for fuels with S content ≤0,50 % by mass			
	5.3				
	5.4	Significance and use of VGC	8		
Ann	ex A (in	formative) Algorithms to calculate SG, BMCI and VGC	10		
Rihl	ingranh	TV	12		

ISO/DTR 18588

https://standards.iteh.ai/catalog/standards/sist/73453dab-4933-44f1-af2f-44c5d6a4e619/iso-dtr-18588

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 28, *Petroleum and related products, fuels and lubricants from natural or synthetic sources*, Subcommittee SC 4, *Classifications and specifications*.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Introduction

On 1 January 2020, MARPOL Annex VI Regulation 14.1 reduced the maximum sulfur (S) content of marine fuels when operating outside an emission control area (ECA) from 3,50 % by mass to 0,50 % by mass. This resulted in a more diverse range of fuel blend formulations being offered to the marine market and an increasing interest by the marine industry in the characterization of petroleum-derived fuels not including fatty acid methyl ester (FAME), in terms of their aromatic or paraffinic nature.

This document provides an indicator for defining whether a petroleum-derived residual fuel which does not include FAME, as supplied to a ship, is more aromatic or paraffinic in nature.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 18588

https://standards.iteh.ai/catalog/standards/sist/73453dab-4933-44f1-af2f-44c5d6a4e619/iso-dtr-18588

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/DTR 18588

https://standards.iteh.ai/catalog/standards/sist/73453dab-4933-44f1-af2f-44c5d6a4e619/iso-dtr-18588

Petroleum products — Characterization of marine fuels by viscosity gravity constant

1 Scope

This document provides best practices on the calculation and use of an informative indicator for the characterization of fossil residual marine fuels not containing FAME as defined in ISO 8217. This document is based on established guidance used by the petroleum industry to characterize petroleum fractions in terms of their paraffinic, naphthenic or aromatic nature, by their viscosity-gravity constant.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

fatty acid methyl ester

ester derived by (trans-)esterification of fats and vegetable oils

3.2

very low sulfur fuel oil

VLSFO

marine fuel with a maximum sulfur content of 0,50 % by mass

3.3

high sulfur fuel oil

HSFO

marine fuel with a sulfur content exceeding 0,50 % by mass

4 Characterization of petroleum fuels

4.1 General

Riazi cites two methods for the characterization of petroleum fractions:

- the Bureau of Mines correlation index (BMCI);
- the viscosity-gravity constant (VGC).

4.2 BMCI (or CI)

4.2.1 General

BMCI, often also referred to as correlation index (CI) is used to characterize petroleum fractions/crude oils. Riazi^[1] reports that values of BMCI between 0 and 15 indicate a predominantly paraffinic oil. A value of BMCI greater than 50 indicates a predominance of aromatic compounds^[2]. According to the CI scale^[3], all n-paraffins have a CI value of 0, while cyclohexane (the simplest naphthene), has a CI value of 50, and benzene has a CI value of 100. Using the CI scale, petroleum fractions can be classified as described in Table 1.

Table 1 — Classification of petroleum fractions according to CI values

Nature of petroleum fraction	CI value
Paraffinic (P)	<29,8
Naphthenic (N)	<57,0
Aromatic (A)	>75,0

4.2.2 Calculation of BMCI (or CI)

BMCI (or CI) relies on terms that are not available from the routine testing of marine fuels. It can be determined from Formula (1).

$$I_{\text{BMC}} = \frac{48640}{T_{\text{b}}} + 473.7 \times G_{\text{s}} - 456.8$$
(1)
$$\text{(standards.iteh.ai)}$$

where

 $I_{\rm BMC}$ is the Bureau of Mines correlation index; \bigcirc/\bigcirc TR 18588

 $G_{\rm s}$ is the liquid specific gravity at 15,6 °C (60 °F) [see Formula (2)];

 $T_{\rm b}$ is the volume average boiling point, expressed in degree kelvin (K) [see Formula (3)].

 G_s can be calculated from the fuel's density as follows:

$$G_{\rm S} = \frac{\left(\frac{\rho_{15}}{1000} - K\right)}{H} \tag{2}$$

where

 ρ_{15} is the density at 15 °C, expressed in kilogram per cubic metre (kg/m³);

H and *K* are variables the values of which are to be selected from $\frac{\text{Table 2}}{\text{Table 2}}$.

Table 2 — **Values of** H **and** K **versus** G_s

$G_{\rm s}$ v	alue	H value	K value	
min.	max.	π value		
≥0,79	<0,81	0,998 342	0,000 964	
≥0,81	<0,83	0,998 492	0,000 842	
≥0,83	<0,849 999 9	0,998 641	0,000 718	
≥0,849 999 9	<0,875 000 1	0,998 761	0,000 616	
≥ 0,875 000 1	<0,900 000 1	0,998 881	0,000 511	

$G_{\rm s}$ v	alue	H value	K value	
min.	max.	n value		
≥0,900 000 1	<1	0,999 011	0,000 394	
≥1	<,1	0,998 861	0,000 544	

The volume average boiling point T_b can be calculated from Formula (3):

$$T_{\rm b} = 9,3369 \times e^{\left(1,6514 \times 10^{-4} \times M + 1,4103 \times G_{\rm s} - 7,5152 \times 10^{-4} \times M \times G_{\rm s}\right)} \times M^{0,5369} \times G_{\rm s}^{-0,7276} \tag{3}$$

where

 $T_{\rm b}$ is the volume average boiling point, expressed in degree kelvin (K);

 G_s is the liquid specific gravity at 15,6 °C (60 °F) [see Formula (2)];

e is the Euler number;

M is a variable, the value of which can be calculated from Formula (4).

$$M = 223,56 \times v_{38}^{(-1,2435+1,1228 \times G_s)} \times v_{99}^{(3,4758-3,038 \times G_s)} \times G_s^{-0,6665}$$
(4)

where

(standards.iteh.ai)

 $v_{\rm 38}~$ is the viscosity at 38 °C, expressed in square millimetre per second (mm²/s);

htt v_{99} is the viscosity at 99 °C, expressed in square millimetre per second (mm²/s). 619/iso

Hence, the conversion of viscosity at 50 °C, v_{50} , to viscosity at 38 °C and 99 °C is essential.

Formulae (5) and (6) can be used to convert viscosity at 50 °C to viscosity at 38 °C and 99 °C as follows:

$$v_{38} = e^{e^{\left\{\ln\left[\ln(v_{50} + 0.7)\right] + 3.55 \times \ln\left(\frac{273.15 + 50}{273.15 + 38}\right)\right\}} - 0.7$$
(5)

$$v_{99} = e^{e^{\left\{\ln\left[\ln(v_{50} + 0.7)\right] + 3.55 \times \ln\left(\frac{273.15 + 50}{273.15 + 99}\right)\right\}} - 0.7$$
(6)

where v_{50} is the viscosity at 50 °C, expressed in square millimetre per second (mm²/s).

4.2.3 Algorithm to calculate BMCI (or CI)

The algorithm to calculate BMCI (or CI) can be found in Annex A.

4.3 Viscosity-gravity constant

4.3.1 General

Viscosity-gravity constant (VGC) is based on an empirical relation developed between Saybolt viscosity (SUS) and specific gravity through a constant. Later, the formulae were reviewed, using density and viscosity for the calculation of VGC, as in ASTM D2501. Both Riazi and ASTM D2501 refer to VGC

values for paraffinic and aromatic hydrocarbons. According to Speight (4), VGC varies for paraffinic hydrocarbons from 0,74 to 0,75, for naphthenic from 0,89 to 0,94, and for aromatics from 0,95 to 1,13. ASTM D2501 refers to values of VGC near 0,800 indicating samples of paraffinic character, while values close to 1,00 indicate a preponderance of aromatic structures.

4.3.2 Calculation of VGC

The original formulae used Saybolt Universal Seconds and specific gravity as the input parameters. The formulae were later transformed to use kinematic viscosity in excess of 4 mm 2 /s at 40 °C and density at 15 °C as input parameters. The formulae were further revised to use kinematic viscosity in excess of either 5,5 mm 2 /s at 40 °C or 0,8 mm 2 /s at 100 °C [see Formula (7)].

$$C_{\text{VG}} = \frac{\rho_{15} - 0.108 - 0.1255 \times \lg(\eta - 0.8)}{0.90 - 0.097 \times \lg(\eta - 0.8)} \tag{7}$$

where

 C_{VG} is the viscosity-gravity constant;

 ρ_{15} is the density of the fuel at 15 °C, expressed in gram per millilitre (g/ml);

 η is the viscosity of the fuel at 100 °C, expressed in square millimetre per second (mm²/s).

NOTE ASTM D2501 also includes a formula to calculate VGC based on viscosity at 40 °C.

Formula (8) can be used to convert viscosity at 50 °C to viscosity at 100 °C as follows:

$$\eta = e^{e^{\left\{\ln\left[\ln(v_{50} + 0.7)\right] + 3.55 \times \ln\left(\frac{273.15 + 50}{273.15 + 100}\right)\right\}} - 0.7}$$
(8)

where

- η is the viscosity of the fuel at 100 °C, expressed in square millimetre per second (mm²/s);
- *e* is the Euler number:

 v_{50} is the viscosity at 50 °C, expressed in square millimetre per second (mm²/s).

4.3.3 Algorithm to calculate VGC

The algorithm to calculate VGC can be found in Annex A.

5 Samples data analysis

5.1 General

The following figures are based on a sample subset of residual marine fuels of approximately 9 000 samples with S content \leq 0,50 % by mass and approximately 1 000 samples with S content \geq 0,50 % by mass drawn in 2021.

NOTE Similar results were obtained for two other data sets of samples.

5.2 BMCI versus VGC and density for fuels with S content ≤0,50 % by mass

Figure 1 plots the calculated BMCI value of residual fuel oils with a sulfur content at or below 0,50 % by mass [very low sulfur fuel oil (VLSFO)] against the calculated VGC value.

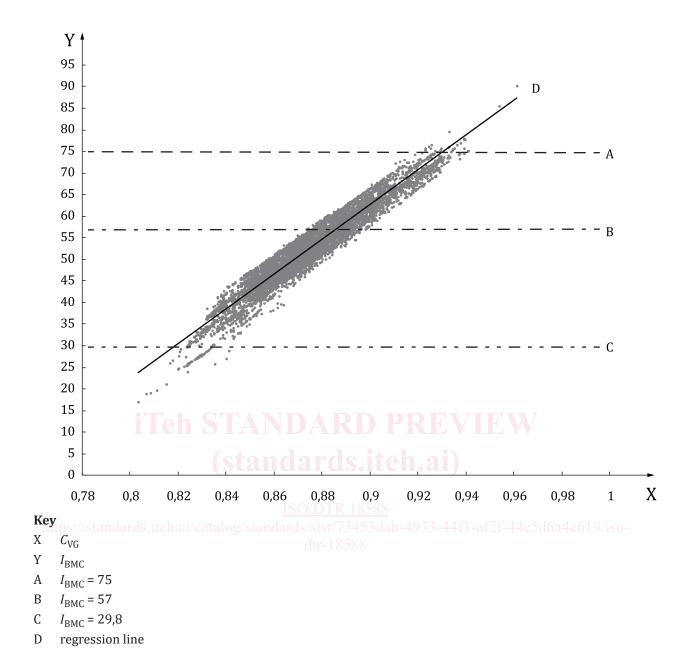


Figure 1 — Plot of BMCI against VGC for VLSFO

Figure 2 plots the calculated BMCI value against density. Using the BMCI scale reference values, the corresponding VGC values and density can be calculated (see <u>Table 3</u>).