

FINAL DRAFT International Standard

Space systems — Structural design — Determination of loading levels for static qualification testing of launch vehicles

Systèmes spatiaux — Conception des structures — Détermination des niveaux de chargement pour un essai statique de qualification des véhicules lanceurs

ISO/FDIS 14953

ISO/TC 20/SC 14

Secretariat: ANSI

Voting begins on: **2023-12-28**

Voting terminates on: 2024-02-22

ISO/FDIS 14953

https://standards.iteh.ai/catalog/standards/sist/b162e53b-7067-46e6-adef-a9e00b4fe676/iso-fdis-14953

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/FDIS 14953

https://standards.iteh.ai/catalog/standards/sist/b162e53b-7067-46e6-adef-a9e00b4fe676/iso-fdis-14953

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Foreword				Page iv
2				
3	Terms and definitions			1
4	Desi; 4.1 4.2 4.3 4.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 2 3 3 3 3 4 4
	4.5 4.6	1		5
D21.1	: l			_

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO/FDIS 14953

https://standards.iteh.ai/catalog/standards/sist/b162e53b-7067-46e6-adef-a9e00b4fe676/iso-fdis-14953

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 20, *Aircraft and space vehicles*, Subcommittee SC 14, *Space systems and operations*.

This second edition cancels and replaces the first edition (ISO 14953:2000), which has been technically revised.

The main changes are as follows:

- the formula for J_C has been changed so that all the terms are multiplicative,
- a new correction factor has been introduced to take into account the structure imperfections.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Space systems — Structural design — Determination of loading levels for static qualification testing of launch vehicles

1 Scope

This document specifies a procedure for determining the loading level of a qualification test of a launch vehicle structure and takes into account all the minimum allowable strength characteristics necessary for these structures.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at https://www.electropedia.org/

3.1

external loading

system of forces, moments and pressures external to a structure and applied to that structure

3.2

failure mode

manner in which failure occurs

Note 1 to entry: A failure mode may be defined by the function lost or other state transition that occurred.

Note 2 to entry: Structural failure modes include: rupture, collapse, detrimental deformation, excessive wear or any other phenomenon resulting in an inability to sustain loads, pressures and corresponding environments, or that jeopardizes mission success.

[SOURCE: IEC 60050-192:2015, 192-03-17, modified — Note 2 to entry has been added reflecting the definition in ISO 10786:2011, 3.19.]

3.3

limit load

design limit load

maximum load, or combination of loads, which a structure or a component in a structural assembly is expected to experience during its service life, in association with the applicable operating environments

Note 1 to entry: Load is a generic term for thermal load, pressure, external mechanical load (force, moment, or enforced displacement) or internal mechanical load (residual stress, pretension, or inertial load).

Note 2 to entry: The corresponding stress or strain is called limit stress or limit strain.

[SOURCE: ISO 24638:2021, 3.13, modified — "maximum expected load" has been replaced by "maximum load".]

3.4

qualification test

required formal contractual test conducted to demonstrate that the design, manufacturing, and assembly have resulted in hardware conforming to specification requirements

Note 1 to entry: Qualification tests are conducted on a flight-quality article at load levels and durations sufficient to demonstrate that all design requirements have been met under the specified environmental conditions. Both protoflight and prototype tests are considered qualification tests.

Note 2 to entry: The qualification test may also validate the planned acceptance programme including test techniques, procedures, equipment, instrumentation, and software.

[SOURCE: ISO 10795:2019, 3.187, modified — The word "used" has been replaced by "conducted"; "hardware designs" has been changed to "hardware"; note 1 to entry and note 2 to entry have been added.]

3.5

safety factor

coefficient by which limit loads are multiplied in order to account for the statistical variations of loads and structure resistance, and inaccuracies in the knowledge of their statistical distributions

Note 1 to entry: The two main safety factors are the yield safety factor (for metals) and the ultimate safety factor. They are used to define respectively the yield load and the ultimate load.

[SOURCE: ISO 16454:2007, 3.10, modified — The term has been changed from "design safety factor" to "safety factor"; the symbol "*J*" and note 1 to entry have been added.]

4 Design of loading levels iTeh Standards

4.1 General

Qualification tests shall be conducted on a flight-type structure. Because such structures are unlikely to include minimum values for all allowable characteristics, the loads used for design shall be corrected before use in qualification tests. All areas of the launch-vehicle flight structure shown to be critical in probable failure modes shall be considered for the following correction which shall be used to determine the qualification test loading.

4.2 Calculation of qualification test loading

The corrected external loading, $P_{\rm Q}$, (force, moment, pressure) used for qualification tests shall be calculated from the following formula:

$$P_{\rm O} = P_{\rm lim} \times J_{\rm C}$$

where

 P_{lim} is the limit load used for design;

 $J_{\rm C}$ is the corrected safety factor.

4.3 Corrected safety factor

The corrected factor, I_C , is given by the following formula:

$$J_{\rm C} = J \times K_{\rm min} \times K_{\rm adj} \times K_{\rm T} \times K_{\theta} \times K_{\sigma} \times K_{\rm imp}$$