

iTeh Standards (https://standards.iteh.ai) Document Preview

SO 16063-21:2003/Amd 2:2024

102-2024/https://standards.iteh.ai/catalog/standards/iso/37158cbd-ae1f-4d75-b919-51a84d18b2a4/iso-16063-21-2003-amd

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

ISO 16063-21:2003/Amd.2:2024(en)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 108, *Mechanical vibration, shock and condition monitoring*.

A list of all parts in the ISO 16063 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

ttps://standards.iteh.ai/catalog/standards/iso/37158cbd-ae1f-4d75-b919-51a84d18b2a4/iso-16063-21-2003-amd-2-2024

iTeh Standards (https://standards.iteh.ai) Document Preview

<u>ISO 16063-21:2003/Amd 2:2024</u> https://standards.iteh.ai/catalog/standards/iso/37158cbd-ae1f-4d75-b919-51a84d18b2a4/iso-16063-21-2003-amd-2-2024

Methods for the calibration of vibration and shock transducers —

Part 21: Vibration calibration by comparison to a reference transducer

AMENDMENT 2

Introduction

Add the following paragraph at the end of the Introduction:

ISO 16063-21:2003/Amd 2 aims to explain better the use of reference transducers, different calibration setups and opens up the frequency limits for the applicable calibration range.

1 Scope

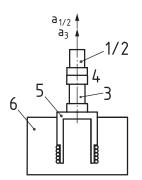
Add the following sentence at the end of the scope before the NOTE:

"This document is applicable to calibrations outside the frequency range from 0,4 Hz to 10 kHz, considering the additional facts described in 4.3. Systems have been demonstrated to cover the range from 0,01 Hz to 30 kHz."

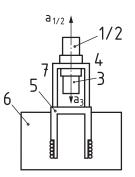
ISO 16063-21:2003/Amd 2:2024

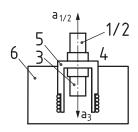
ps://standards.iteh.ai/catalog/standards/iso/37158cbd-ae1f-4d75-b919-51a84d18b2a4/iso-16063-21-2003-amd-2-2024

4.3


Replace the last but one paragraph by the following:

"The reference transducer may be of the back-to-back type meant for direct mounting of the transducer to be calibrated on top of it, in a back-to-back configuration, see Figure 1 a). It may also be a transducer used in a fixture, see Figure 1 b), or underneath the exciter mounting platform (built-in reference transducer), see Figure 1 c), always in line with the transducer to be calibrated. In the setup shown in Figure 1 c) the reference might even be an integral part of the exciter (which means it cannot be detached). To reduce the influence of rocking motions, the centres of the seismic elements of both transducers should be superimposed on one axis coinciding with the axis of vibration. It is not recommended to mount the two transducers side by side as rocking motions will often be present, causing large errors in many circumstances.


For low frequency calibrations requiring measurements below a few Hz, long stroke exciters are used giving displacements of 100 mm or more. The setups are normally like the one shown schematically in Figure 2. The principle is the same as Figure 1 b) but the armature is a sledge driven by an electromagnetic system or otherwise. The sledge configuration permits heavy transducers to be calibrated. Some transducers (e.g. seismometers) are sensitive in the transverse direction with respect to their mounting surface. They can then be mounted directly on the sledge without the fixture 7 in Figure 2.


For these low frequency setups, the influence of rocking motion typically is very low, so side by side measurements can be performed with low uncertainty.

ISO 16063-21:2003/Amd.2:2024(en)

a) Calibration set-up with backto-back reference transducer

b) Calibration set-up with mounting fixture (contains single ended transfer reference transducer)

c) Calibration set-up with vibration exciter internal reference transducer

Key

- 1 transducer to be calibrated (see Note 1)
- 2 transfer standard, used for transfer calibration of transducer 3 (see Note 1 and ISO 16063-21:2003/Amd 1:2016, Annex E)
- 3 reference transducer (see Note 1)
- 4 top surface of back-to-back transducer (subfigure a)), mounting surface of mounting fixture (subfigure b)) or mounting surface of vibration exciter (subfigure c))
- 5 vibration exciter armature
- 6 vibration exciter body
- 7 mounting fixture (providing back-to-back configuration)
- a_{1/2} nominal sensitivity axis of transducer 2/1 (standard set-up: transducer to be calibrated)
- a₃ nominal sensitivity axis of transducer 3 (standard set-up: reference transducer)

ocument Previe

Figure 1 — Permitted calibration set-ups for a standard calibration and transfer calibration

SO 16063-21:2003/Amd 2:2024

ttps://standards.iteh.ai/catalog/standards/iso/37158cbd-ae1f-4d75-b919-51a84d18b2a4/iso-16063-21-2003-amd-2-2024