NOTICE: This standard has either been superseded and replaced by a new version or withdrawn. Contact ASTM International (www.astm.org) for the latest information

Designation: C730 – 98 (Reapproved 2013)

Standard Test Method for Knoop Indentation Hardness of Glass¹

This standard is issued under the fixed designation C730; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of the Knoop indentation hardness of glass and the verification of Knoop indentation hardness testing machines using standard glasses.

1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

E4 Practices for Force Verification of Testing Machines E384 Test Method for Knoop and Vickers Hardness of Materials

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 *Knoop hardness number (KHN)*—a number obtained by dividing the applied load in kilograms-force by the projected area of the indentation in square millimetres, computed from the measured long diagonal of the indentation and the included edge angles of the diamond. It is assumed that the indentation is an imprint of the undeformed indenter.

3.1.2 The Knoop hardness number (KHN) is computed as follows:

$$KHN = (P/A_p) = (P/d^2C_p)$$
(1)

P = load, kgf,

 A_n = projected area of the indentation, mm²,

d' = length of the long diagonal of the indentation, mm,

 $C_p = \frac{1}{2} (\cot A/2 \times \tan B/2),$

 A^{P} = included longitudinal edge angle (see Fig. 1), and

B = included transverse edge angle (see Fig. 1).

3.1.3 Knoop indentation hardness tests in glass are made at a test load of 100 gf (0.1 kgf).

3.1.4 The rate of indenter motion prior to contact with the specimen shall be 0.20 ± 0.05 mm/min. This low rate of load application tends to alleviate the effect of the magnitude of the load on Knoop hardness number.

3.1.5 The indenter should remain in contact with the specimen between 20 and 30 s. Most of the calibrated machines that are used for making Knoop hardness tests are dash-pot controlled and this dwell time is consistent with the adjustment of the dash-pot to meet the loading rate standard.

3.1.6 Table 1 gives the Knoop hardness of several glasses as a function of load when the loading rate and dwell time are held at the values recommended above.

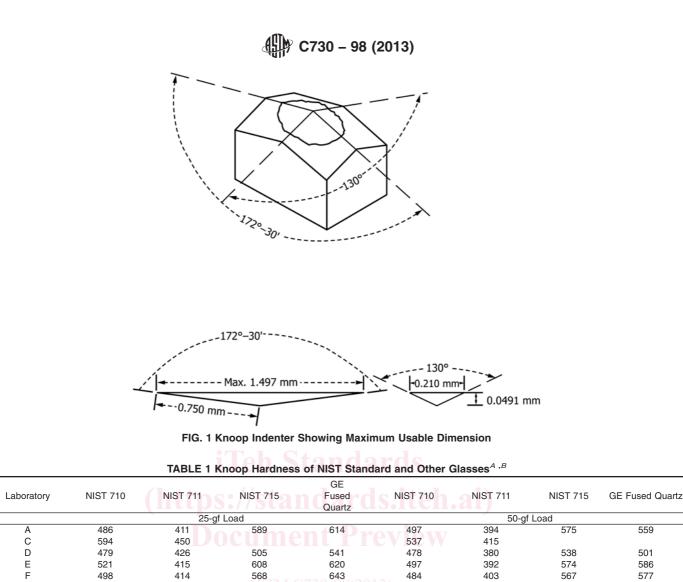
3.1.7 *Knoop indentation hardness test*—an indentation hardness test using a calibrated machine to force a pointed, rhombic-base, pyramidal diamond indenter having specified face angles, under a predetermined load, into the surface of the material under test and to measure the long diagonal of the resulting impression after removal of the load.

Note 1—A general description of the Knoop indentation hardness test is given in Test Method E384. The present method differs from this description only in areas required by the special nature of glasses.

4. Significance and Use

4.1 The Knoop indentation hardness is one of many properties that is used to characterize glasses. Attempts have been made to relate Knoop indentation hardness to tensile strength, grinding speeds, and other hardness scales, but no generally accepted methods are available. Such conversions are limited in scope and should be used with caution, except for special cases where a reliable basis for the conversion has been obtained by comparison tests.

5. Apparatus


5.1 Testing Machines:

5.1.1 There are two general types of machines available for making this test. One type is a self-contained unit built for this

¹ This test method is under the jurisdiction of ASTM Committee C14 on Glass and Glass Products and is the direct responsibility of Subcommittee C14.04 on Physical and Mechanical Properties.

Current edition approved Oct. 1, 2013. Published October 2013. Originally approved in 1972. Last previous edition approved in 2008 as C730 – 98 (2008). DOI: 10.1520/C0730-98R13.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

G 556 Avg 516 423 567.5 609.5 499 397 563.5 Departure, max, 15 6 11 11 8 5 5 10 %

70								
Range, max, %	22	9	18	17	12	9	7	15
	100-gf Load				200-gf Load			
А	475	387	558	554	468	380	550	523
С	478	387	554	593	468	371	544	530
D	452	368	521	473	433	360	529	474
E	490	396	544	530	488	372	546	510
F	467	381	538	524	457	367	524	502
G	481	388	550	558				
Avg	474	384.5	544	539	463	370	539	508
Departure, max,	5	4	4	12	6	3	3	7
%								
Range, max, %	8	7	7	22	12	5	5	11

^A NIST 710—NIST standard soda-lime-silica glass (no longer available; NIST 710a may be substituted), NIST 711—NIST standard lead-silica glass. NIST 715—NIST standard alkali-free aluminosilicate glass.

^B These data were obtained from ASTM round-robin testing.

purpose, and the other type is an accessory available to existing microscopes. Usually, this second type is fitted on an invertedstage microscope. Good descriptions of the various machines are available.^{3,4}

5.1.2 Design of the machine should be such that the loading rate, dwell time, and applied load can be standardized within the limits set forth in 3.1.3 - 3.1.5. It is an advantage to eliminate the human element whenever possible by appropriate machine design. The machine should be designed so that

559

501

586

577

³ Specifications for Knoop indenters can be found in the book Small, L., Hardness Theory and Practice (Part I: Practice), Service Diamond Tool Co., Ann Arbor, MI, 1960, pp. 241-243.

⁴ Mott, B. W., Micro-Indentation Hardness Testing, Butterworth's Scientific Publications, London, 1956.