°
BE SLOVENSKI STANDARD

SIST R206-001:1999
01-april-1999

Guidelines for the implementation and use of the common interface for DVB
decoder applications

Guidelines for implementation and use of the common interface for DVB decoder
applications

Ta slovenski standard je istoveten Zz: R206-001:1998

ICS:

33.160.99 Druga avdio, video in Other audio, video and
avdiovizuelna oprema audiovisual equipment

SIST R206-001:1999 en

2003-01.Slovenski institut za standardizacijo. RazmnoZevanje celote ali delov tega standarda ni dovoljeno.



SIST R206-001:1999

iTeh STANDARD PREVIEW
(standards.iteh.ai)

SIST R206-001:1999
httpsy//standards.iteh.ai/catalog/standards/sist/d49e9c57-2793-4ed3-afad-
5d3a%9e564a56/sist-r206-001-1999




CENELEC R206-001

REPORT July 1998

English version

Guidelines for implementation and use of the common
interface for DVB decoder applications

This CENELEC R_epoh has been prepared by the Technical Committee CENELEC TC 206, Consumer
equipment for entertainment and information and related sub-systems. It was approved by the Technical
Committee on.1996-12-18.and endorsed by the,CENELEC ‘Fechnical Board on 1997-03-1 1.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Czech Repubilic,
Denmark, Finland, France, Germany, Greecs, Iceland -Ireland, Italy, Luxembourg, Netherlands, Norway,
Portugal, Spain, Sweden, Switzerland and United Kingdom.

CENELEC

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Européisches Komitee fir Elektrotechnische Normung

Central Secretariat: rue de Stassart 35, B - 1050 Brussels

© 1998 CENELEC - Ali rights of exploitation in any form and by any means reserved worldwide for CENELEC members.

Ref. No. R206-001:1998 E



Page 2
R206-001:1998

Foreword
This technical report was prepared by the Technical Committee CENELEC TC 206, Consumer equipment for
entertainment and information and related sub-systems. TC 206 considered and approved this technical report on
1996-12-18.
It was approved for publication by the CENELEC Technical Board on 1997-03-11.

This technical report is to be read in conjunction with EN 50221:1997, Common interface specification for
conditional access and other digital video broadcasting decoder applications.



CONTENTS

L INTRODUCTION

Page 3
R206-001:1998

2. REFERENCES

n

3. SPECIFICATION OVERVIEW

5
4. PHYSICAL LAYER 6
4.1. RATIONALE 6
4.2. TRANSPORT STREAM INTERFACE "6
4.3. COMMAND INTERFACE 9
4.4. SINGLE SOCKET VS. MULTIPLE SOCKETS 10
4.5. DVB PLUS FULL-FUNCTION PC CARD SOCKET 11
4.6. EXTENDERS 11
5. LINK LAYER 11
5.1. RATIONALE 11
5.2. IMPLEMENTATION GUIDELINES 11
6. TRANSPORT LAYER 12
6.1. RATIONALE 12
6.2. IMPLEMENTATION GUIDELINES 12
7. SESSION LAYER 13
7.1. RATIONALE 13
7.2. RESOURCES 14
7.3. IMPLEMENTATION GUIDELINES 14
8. APPLICATION LAYER 15
8.1. RATIONALE 15
8.2. DEADLOCK 15 .
9. RESOURCES 15
9.1. MINIMUM RESOURCES 15
9.2, RESPONSE TIMES 15
9.3. RESOURCE MANAGER 17
9.4. APPLICATION INFORMATION 18
9.5. CONDITIONAL ACCESS SUPPORT 18
9.6. DVB HOST CONTROL 22
9.7. DATE & TIME : 22
9.8. MAN-MACHINE INTERFACE 23
9.9. LOW-SPEED COMMUNICATIONS 27
9.10. AUTHENTICATION 31
9.11. EBU TELETEXT DISPLAY 31
9.12. SMART CARD READER 31
9.13. DVB EPG FUTURE EVENT SUPPORT 31
10. ERROR MANAGEMENT 32
10.1. INTRODUCTION 32
10.2. APPLICATION LAYER FAILURES 32
10.3. IMPLEMENTATION GUIDE-LINES 32
11. GENERAL IMPLEMENTATION GUIDELINES 37
11.1. INITIALISATION 37
11.2. DISCONNECTION 38



Page 4
R206-001:1998

11.3. HOT SWAPPING 38
11.4. PROTOCOL LAYER IMPLEMENTATION 38
12. ENVIRONMENTAL 39
12.1. MECHANICAL GUIDELINES 39
12.2. MODULE ENVIRONMENTAL CONSIDERATIONS 40
12.3. HOST DEVICE MANUFACTURER GUIDELINES 40
12.4. MODULE MANUFACTURER GUIDELINES 40
12.5. MODULE GROUNDING 41
13. CONSTRAINTS AND INTERPRETATION 42
13.1. BIT AND BYTE ORDER INTERPRETATION 42
ANNEX A: DIAGRAMS AND FLOWCHARTS OF CA_PMT OPERATION 43
A.1. DIAGRAMS DESCRIBING THE USE OF THE CA_PMT_LIST_MANAGEMENT PARAMETER 43
A.2. FLOWCHARTS DESCRIBING THE USE OF CA_PMT AND CA_PMT_REPLY 44
ANNEX B; PHYSICAL LAYER DEADLOCK DISCUSSION 51




Page 5
R206-001:1998

1. INTRODUCTION

This document has two main purposes. The first is to explain why the Common Interface Specification [1] is
designed the way it is. This will be done in the ‘Rationale’ sections throughout the document. The second pur-
pose is to give guidance on how to implement and use the Common Interface. This will include recommenda-
tions for various design options where specific limits were not set in the specification.

These guidelines contain recommendations for implementation in various places which extend the Common
Interface specification. These represent the best efforts of contributors to this document to ensure that modules
and hosts are fully interoperable. Designers are free to accept or ignore them. However if a recommendation is
ignored the designer should be confident that he fully understands the implications of doing this and the effect
this may have on the interoperability of his product.

2. REFERENCES

[1] Common interface specification for conditional access and other digital video broadcasting decoder
applications, EN 50221:1997. -

{2] PC Card Standard, Volume 2 - Electrical Specification, February 1995, Personal Computer Memory Card
International Association, Sunnyvale, California.

[3] PC Card Standard, Volume 3 - Physical Specification, February 1995, Personal Computer Memory Card
International Association, Sunnyvale, California.

[4] PC Card Standard, Volume 4 - Metaformat Specification, F ebruary 1995 Personal Computer Memory Card
International AsSocidtion, Sunnywale, California;

3. SPECIFICATION OVERVIEW

The specification/was designed-in-the first instance to meet Conditional Access requirements, since that was its
raison d'étre. However, almost from’ the ‘start it was realised that Conditional Access was but one application
that would be required by DVB hosts, and a general interface design that would allow other applications to be
addressed would be much more useful than one directed just at Conditional Access. By partitioning

* functionality appropriately between the host and the application on the other side of the interface allowed

different concerns to be neatly separated.

As an example of this, if it had been assumed that Conditional Access functionality was partitioned in some way
between the host and the module-based application, as is done in most current CA system implementations, then
very much work would need to be done to define a generic’ CA function which would reside in the host, inter-
acting with a ‘specific’ CA function residing in the module. Also all current CA providers, and perhaps some
potential CA providers - and host manufacturers - would need to agree such a definition. This was not practical
for political, technical and resource reasons, and Just served to confirm the early vision of the designers that the
way to go was an interface specification that was truly common and essentially free of specific application
semantics.

This view also drove us to the need to transfer the whole of the MPEG Transport Stream across the interface. In
principle, having agreed a Common Scrambling Algorithm, there is scope to save cost by implementing the
descrambler in the host. However the descrambler is an integral component of the security of any Conditional
Access system, and such security considerations and the general reluctance to agree on a common descrambler
control interface made putting the descrambler on the module an essential feature of the system. Although that
was the major reason for that decision it then enables very many more possibilities. The Common Interface now
becomes a general-purpose MPEG input and output port, with all that entails for future functionality.

It was also not clear initially what was the best form of physical layer to adopt. PCMCIA was a very early
candidate, but some work was also done to look at IEEE-1394, which was the strong favourite for Digital VCR
connection, and some evaluation of the NRSS proposal from the US to use modified ISO 7816 was also done.
This uncertainty confirmed another early design decision to layer the interface according to the principles



Page 6
R206-001:1998

adopted in the ISO-OSI 7-layer model. Initially we thought that the Command Interface might have three or so
layers. In fact it has ended up with five, one of which has two sublayers. This may seem to increase complexity,
but in fact it allows the total interface functionality to be partitioned in such a way that each layer can be
optimised to its task almost independently of any other layer. The approach was vindicated totally when the
concept of multiple transport connections on one physical connection was introduced with virtually no design
change, and the full development of the resource concept; together with the use of the session layer to make it
happen, was done with no impact on the transport or any other lower layers.

4. PHYSICAL LAYER

4.1, Rationale

PCMCIA was chosen because it was suitable, relatively well specified, and was gaining rapid acceptance and
deployment in the personal computer field. Initially the design conformed extremely closely to the PCMCIA
Version 2.1 specification, but investigation of the-implementation cost and complexity of this approach led to
the current design which utilises the ‘Custom Interface’ provisions of the PCMCIA specification. Basic
initialisation compatibility is preserved. This means that DVB-compliant hosts can accept any other PCMCIA
module without damage and determine that it is not a Common Interface module. Similarly a Common Interface
module can be plugged into a PCMCIA socket on any other system without damage, and the usability of it in
that system can be determined.

The Transport Stream Interface is 8-bit parallel in each direction and is intended to match the type of interfaces
currently being developed between front-ends and,demultiplexers in,MPEG-2,equipment. Using 8 bits means
the data rate on each pin remains relatively ‘modest'and there"is scope for-a speed-increase in later generations.
The particular approach taken also makes for a very simple design where a host includes several module sockets
and the Transport Stream Interface is daisy-chained through them.

The Command Interface has been designed to make! the Host'side’ of it as simple as possible. It can be supported
by simple buffering and 2ddress décoding' from the host's:CPU or /O bus using programmied /O, and for multi-
ple-socket hosts the moduié bus can be connected to-alb sockets(in parallel; with module selection done using the
PC Card CE1# signal. It has also been designed to make it possible to use DMA techniques where the required
data rate and module buffering capacity make this worthwhile. The buffer size négotiation process is there to
allow a wide range of host and module capabilities to be accommodated, with both adjusting to the maximum
common to both. There is no support for interrupts from the module to the host in the current version. It is a host
responsibility to poll the interface status flags periodically to determine if any [/O operations are required. This
approach has been taken to simplify both host and module interface drivers, and to enforce the convention that
the host is the master in transactions with the module.

Successful communication depends on the reliability of the Command interface in this layer, since all the higher
protocol layers assume that the layer immediately below is reliable. By ‘reliable’ is mearnt that data is
transmitted in correct sequence with none missing and none repeated.

4.2. Transport Stream Interface

The Transport Stream Interface is 8-bit parallel in each direction, with two control lines each on input and’
output and separate byte (octet) clocks for each. On each interface there is a continuous stream of bytes at the
byte clock rate. This is structured into 188-byte MPEG-2 Transport Packets, and there may also be gaps in the
byte stream when non-valid data is transferred. The MxSTRT signal (where x = [ or O depending on direction)
is valid for one byte and indicates the initial (sync) byte of each Transport Packet. MxVAL indicates valid bytes.
Depending on the host implementation there are three possibilities for the operation of MxVAL:

1 Transport Packets are sent sequentially with no gaps at all, in which case MxVAL is permanently valid.
2 Transport Packets are sent as a 188-byte group with a gap of non-valid bytes between successive groups.

In this case MxVAL is valid for a 188-byte period and not valid for a period beforé the next Transport
Packet.



Page 7
R206-001:1998

3 Non-valid bytes can appear within a Transport Packet as well as between Transport Packets, in which
case MxVAL will go up and down as needed, but in no particularly predictable way.

Cases 1 and 2 are likely to be common in real hosts. However module designers should also allow for the possi-
bility of case 3 unless there is general agreement amongst host manufacturers that it will not occur, either now
or in future designs.

The transport stream interface allows a fairly large degree of freedom to both the host and the module designer.
Depending on host and module implementations a significant PCR jitter can be created. The hosts can control
the jitter produced by a module by giving it well behaved streams. The module returns a similar well behaved
stream. A host sending Transport Streams with a significant amount of highly variable gaps may expect from
the module a similar stream with significant PCR Jitter added. The specification achieves this behaviour by
indirectly limiting the PCR jitter in the returned transport stream as a function of the number of gaps present in
the input transport packet.

Rule 3 under section 5.4.2 of the specification states:

1A module shall introduce a constant delay when processing an input transport packet, with a maximum delay
variation (tmdv) applied to any byte given by the following formulai

For the avoidance of confusion, this means:

- For the purposes of this clause, the byte positions in each MPEG transport packet shall be indexed by the term i.
The maximum delay variation (tmdv) applied to byte i is given in the formula.below. :

tmdvmax = (n ¥ TMCLKI) + (2 * TMCLKO)

The delay experienced by each byte; will depend on the input and output clock periods of the module
(TMCLKI and TMCLKO), # and i. So, each byte inthe packet may have a different delay. However, the jitter
on this delay (delay, variation) is independent of .

4.2.1. Clock Signals

The PC Card electrical specification mainly considers memory or slow [/O cards. So, it does not consider fast
clock signals such as those used by the Common Interface. This guideline addresses the specification of these
signals. : ' ‘

4.2.1.1. Rationale

This is distilled from protracted discussion within the Common Interface Guidelines group.

For practical reasons - the use of standard HCMOS parts, and for easier EMC design - it is desirable to slow the
specification of rise and fall times. Due to potential cumulative distortion, for chaining of the clocks through
many cascaded modules, some form of clock regeneration is necessary in either the modules or host. The CIGG
has agreed that only the module should be required to do so for economic reasons, and that the host should be
permitted to implement a simple clock buffering solution, with the inevitable distortion this brings.

It has been pointed out that in these circumstances, it is very difficult to produce a specification which is not
flawed when applied to the highest frequency permitted, in the sense that it will not guarantee interoperability.
The argument presented at CIGG is along these lines:



Page 8
R206-001:1998

MCLKO

MCLKI

The symbols used are defined as follows:
tol output low interval on MCLKO (module clock output)
toh output high interval on MCLKO
tof output falling edge time on MCLKO
tor output rising edge time on MCLKO
tdr propagation delay of falling edge through host buffer
tar propagation delay of rising edge through host buffer
ti output low interval on MCLKI (host clock output)
tin output high interval on MCLKI
tig output falling-edge time;,on MCLKI
tir output rising edge time on‘MCLKI

Depending on the threshold of the sensing dévice in the host (and we must ignore voltage noise margins in this
argument), the interval between falling and rising edges crossing the threshold can be as low as ty which is
40 ns. The buffer might/reduce this by!its asymmetry ty < tqy (a falling 'edge may be delayed by more than a
rising edge), and will then have its ownrise“and fall times.)‘We ‘can'then find the guaranteed low and high
intervals to the module.

The worst case low interval at the input of the second module is tj >= to] - tg¢ + tqr - tig for the low interval, and
ti >= top - tdr + tag - tir for the high interval.

4.2.1.2. Guideline

The aspects addressed are:

«  clock signal distortion

+  clock rise and fall times
+  clock signal capacitance
’ over/undershoot

Clock signal distortion

The current AC specification mandates a minimum clock high and low pulse of 40 ns and a period of 111 ns. If
a module or host uses this clock as input and to produce a buffered output, there are significant engineering
challenges in ensuring that the clock is not distorted to the point where the clock specification is no longer met.

Modules shall in all cases output a clock signal MCLKO that complies with the AC specification (with the
clarification that high and low intervals are measured at Vop=2,4 V and V=0,5 V respectively) provided that
the input clock signal MCLKI supplied to the module meets the specification given below under “Clock rise and
fall times”. It is necessary to modify the MCLKI specification to allow practical and economic implementations
of chained CI modules.



Page 9
R206-001:1998

Clock rise and fall times

All statements apply both to rising and falling edges. Asymmetry in voltage levels between host and module
reflects the PC-Card specification.

Module clock output MCLKO:
= Vo1is0,5 Vand Vg is 2,4 V.
- Monotonic between V, and V,,.
- Minimum low (at V) and high (at V) interval is 40 ns.
- Maximum transition time between Vor and Vg, is 20 ns.
- Minimum transition time between Vot and Vg, is 5 ns (to minimise bounce and EMI).

Note that these constraints are particularly difficult to meet if the module may output a clock period of the
minimum specified (111 ns), as the transition time must be less (but not under 5 ns for any loading condition)
and the duty cycle kept very even. Modules which simply shape the incoming clock signal MCLXKI to produce
MCLKO are therefore considered particularly challenging and possibly impractical. To reduce the specification
of the high and low intervals of MCLKO to less than 40 ns would make the host buffering requirements too
exacting.

Host clock output MCLKI:

- Voiis0,5Vand Vg, is 2,8 V.

- Monotonic between V,, and Vou

- Minimum low (at V) and high (at Von) interval is 20 ns,

- Maximum transition time between Vo1 and Vi, is 20.ns.

- Minimum transition time)between Voi and Vo, i5°S Ins (to minimise bounce and EMI).

Note that for hosts that buffer the'one module’s clock-to transmit to/the next, there is fhe constraint that the sum
of the asymmetry of the buffer (the absolute difference of the propagation times of rising and falling edges
through the buffer) and its output transition;time shallnot’éxceed 20 ns (as given by the second bullet above).

Clock signal capacitance
The following maximum capacitance specification shall be observed by all equipment:

- The maximum capacitance load presented to the module output clock MCLKO shall be 50 pF and minimum
10 pF.

- The maximum capacitance load presented to the host output clock MCLKI shall be 25 pF, and minimum
5 pF.

Under and overshoot

On all signals at ail times:
0,5V<=V,<=Vec+0,5V

4.3. Command Interface

On the host side the interface is well specified and it is clear how data should be sent to and from the module.
The specification, deliberately, says nothing about how the module should operate its side of the interface,
except that whatever is done must make the host side behave in the specified manner. Thus the module side of
the interface may mirror exactly the byte-oriented data transfer used by the host, or it may allow more direct
addressable access to the transfer buffers. Also the module may operate in poiled mode, as in the host, or it may
operate in an interrupt-driven manner. These are free choices for the interface hardware designer.

All the commands on the physical interface are presumed to happen instantaneously, except for Reset (setting
the RS bit in the Command register). This can take a short time to complete. The completion is signalled by the
FR bit in the Status register being set.

.



Page 10
R206-001:1998

4.3.1. Deadlock Avoidance

Module designers must be careful to avoid possible deadlocks in the operation of the Physical layer protocol.
For designs which use a separate buffer for each direction of data transmission between host and module then
this is not a major design problem. However low-cost module solutions may use a single buffer. In this case host
and module must arbitrate to gain access to the buffer when it is empty, and to regain access once it has been
used. The module designer must assure himself that his implementation is free of deadlocks when
communicating with a host operating according to the specification.

Amnex B describes an example implementation, for illustration only, showing that deadlock-free
implementations using a single buffer are possible.

4.3.2. Speed

The specification requires that the Command Interface Physical layer should support at least 3,5 Mbit/sec data
throughput in each direction. This was a general requirement on any Physical layer chosen, and it is clear that.
the particular PC Card specification chosen does meet this. It does not mean that all implementations have to
meet this requirement. The actual speed of data transfer depends on a combination of, primarily, the Physical
layer poll interval and the negotiated buffer size. Modules may only have a 16-byte buffer, and such a module
would not be expected to originate or receive high data rates. Hosts, on the other hand, have to allow for at least
a 256-byte buffer and must be designed to handle a commensurate data rate. A reasonable target Physical layer
polling rate would be 10 milliseconds, and if each poll can handle one incoming packet plus one outgoing
packet, then the effective data rate across the interface can be as high as 204,8 kbit/sec in each direction.

43.3. Interrupts

The original conception of the Physical dayer was of ,a polled.interface; and the specification reflects this.
However it has since been pointed out that an interrupt driveninterface {s much more efficient, especially with
multiple sockets, and the module implementation is very straightforward. It is suggested that interrupts should
be supported by all modules from day 1, since this may wéll find its ‘way into Version 2 of the specification as a
mandatory feature of modules. The suggested iniplementation is'as follows: DA ‘& FR should be gated onto the
IREQ# line by two new Interrupt Enable  bits in'thé command registér: DAIE (bit 7) and FRIE (bit 6)
respectively. Interrupt friendly hosts would use these but polling hosts would just set the Interrupt Enable
command bits to 0. The command register now becomes:

bit 7 6 5 4 3 2 1 0
[DAIE[ FRIE | R | R [ RS | SR | SW [ HC |

RS, SR, SW and HC retain their function, as described in the Common Interface specification.
When set, DAIE allows any assertion of the DA bit in the Status register also to assert IREQ#.
When set, FRIE allows any assertion of the FR bit in the Status register also to assert IREQ#.

Use is straightforward. When either DA or FR is asserted and the appropriate Interrupt Enable bit is set, then
IREQ# will be asserted. An interrupt routine is called which then checks both status bits, and at this point it
becomes almost exactly like the polling routine. The host must be prepared to find the FR bit reset when tested,
even though an interrupt was seeq, as in a single buffer design the module may have claimed the free buffer
before the interrupt was serviced.

4.4. Single Socket vs. Multiple Sockets

Single socket support is straightforward, and the specification has been written to place restrictions on the
module implementation to maximise host design freedom. An aim of the specification was to allow multiple
socket implementations to be produced by bussing the command interface to all sockets, with only CEl#
individually provided, and daisy-chaining the Transport Stream Interface with just a simple tristate buffer to
bypass the data & clock signals when no module is plugged in.



Page 11
R206-001:1998

4.5. DVB plus Full-Function PC Card socket

This is likely to be high cost, as the simple bus and daisy-chain approach can no longer be used. Each socket
will require individual support from a control IC which integrates the PC Card standard function support with
the DVB variant support.

4.6. Extenders

The specification was written with the concept of an extender in mind. This is an external device with sockets
for more than one module and a plug-in lead to a socket on the host, allowing several modules to operate with a
single-socket host. The design of the Physical layer allows this, and the design of the Transport layer contains
features deliberately aimed at supporting this.

5. LINK LAYER

Information in this layer and all succeeding layers only refers to the Command Interface, as the layering of the
Transport Stream Interface is covered elsewhere. Thers is, however, some discussion later of the need for many
applications to extract information directly from the MPEG-2 Transport Stream.

5.1. Rationale

Only a simple protocol is provided here to perform two tasks. The first is to fragment and reassemble packets to
fit the buffer size negotiated by the Physical layer on start-up. The second is to multiplex fragments from all the
Transport packets curréntly queued td be s&nt through a particular, socket; to fairly divide the available band-
width between them.

5.2. Implementation Guidelines

5.2.1. Brotocol

The link layer routines which operate the physical interface to send and receive fragments on the host side are
relatively easy to write as that interface is well-specified. The routines on the module side wil] obviously be very
dependent on the exact form of physical interface adopted on the module side. For designers who have to write
both host and module sides of the link layer there will be benefit in making those physical layer access routines
present a common interface to the link protocol routines, so that the same protocol code can be used on both
sides. ‘

In order to operate the fragment multiplexing part of the protocol each fragment contains the transport connec-
tion identifier of the transport packet from which the fragment comes. For a reason which is explained in the
implementation guidelines for the Transport layer (section 5.3.2) this identifier must be supplied directly by the
Transport layer along with the transport packet when one is passed to the Link layer for sending - the Link layer
must not extract it directly from the transport packet. The Link layer should queue transport packets in such a
way that independent queues for each transport connection with a send in progress are maintained, and the frag-
ments should be picked from the packets at the head of each queue in a round-robin fashion.

One possible optimisation that the Link layer can perform is to select a buffer size to match an incoming trans-
port packet. It can identify the first fragment of a transport packet and read the length field of the transport
header, since the transport header will always be short enough to be contained in even a minimum-sized frag-

ment.



Page 12
R206-001:1998

6. TRANSPORT LAYER

6.1. Rationale

This layer provides the means whereby applications or resources on a module are connected to the host. The
presence of this layer makes it easier for modules to partition their functionality, and for hosts to manage that
functionality. Transport connections are onfy from module to host. The architectural model is of a single host
with one or more modules connected to it. The protocol in the version 1.0 specification does not support direct
transport connections between modules, nor does it support multiple hosts connected together and any need for
transport connections either between hosts or between modules on different hosts. Such requirements will be
addressed by other specifications or by future versions of the Common Interface specification. :

However the Transport layer protocol is designed to support the concept of a module extender, where a single

socket on a host can support several modules by means of an intermediate device which plugs into it and itself
contains several sockets. The Req T_C/New_T_C transaction allows intermediate units to set up routing tables
by recognising such objects, and clearing them down again by recognising Delete T_C/D_T_C_Reply transac-

tions. For this reason, and because some modules may wish to utilise more than one transport connection, even

hosts with only one socket must be able to support several transport connections.

The protocol continues the Master/Slave paradigm used by the Physical layer, where the host is master. The poll
capability of the protocol effects this. Also there is a specific transaction to allow a module to transmit data,
where the module signals that it has data to send and the host then specifically requests it. This is done so that
the host can allocate a suitably sized receive buffer, which it may not otherwise do since all replies except for
data are only a few bytes insizeThis helps the host to optimise its buffer allocation'strategy when it is handling
several modules, only one or two of which are likely to be sending data at any one time. The same consideration
is not given to modules, but they have only one;jor perhapstwo transport connections to service, and the size of
objects sent to modules, at least in the current version, is limited practically to about 256 bytes, plus a header or
two.

6.2. Implementation Guidelines

6.2.1, Minimum Implementation

On the module side the Transport layer protocol is reactive, that is, it reacts only to transport packets received
from the host. Any transport packets to be sent are queued until requested by the host. The host, however, has to
manage the flow of data in both directions. To request data or protocol management packets from the module it
polls on all transport connections periodically. For any particular transport connection this poll must be sup-
pressed whilst data flow transactions are proceeding, and only resumed when all data and protocol management
traffic has ceased in both directions. If this were not done then it is possible, during the transfer of large
transport packets to modules which only support small fragments, to get into a situation where useless poll
messages begin to pile up in the host’s send queue.

A potential transport protocol problem is caused by the Link layer requirement to fairly multiplex fragments
from different transport connections to the same module. When a module requests a new transport connection
(Req T C) it is important that New_T_C on the requesting transport connection should be sent before
Create_T_C for the new transport connection, If the interface to the Link layer is done naively then it is possible
for the link layer to send the Create_T_C before the New_T_C, since it regards them as being on different trans-
port connections. The correct way to do it is to pass the existing transport connection identifier to the Link layer
for both the New_T_C and the Create_T_C, and the Link layer will then sequence them correctly. Of course, the
transport connection identifier within the Create_T_C transport packet should be for the new transport connec-
tion and not the existing one. This also illustrates the need for the transport protocol routines to use the transport
connection identifier from the packet, and not the one the Link layer used for sending the fragments.

As stated in the specification the host must be able to support at least 16 simultaneous transport connections,
even though it may only support one Common Interface socket. This is necessary because any module may
require more than one transport connection, and also because it is possible for even a single-socket host to sup-
port multiple modules through the use of an external extender.



Page 13
R206-001:1998

Both host and module must be able to do packet reassembly in the Transport layer, that is, concatenate succes-
sive T-data-more packets together with the final T-data-last packet before passing the resulting packet to the
Session layer. It is not obligatory for either host or module to fragment large packets received from the session
layer into multiple transport data packets. The capability was provided to support ISO 7816 protocols in the
lower layers. That is not currently part of the specification but may become so in the future,

6.2.2.  Multiple Connections

It is expected that modules will fall into two main categories - those that use resources and those that provide
resources. However some modules may do both. In this case it is suggested that the providing and using applica-

6.2.3. Failure Modes

Both host and module should operate time-outs on requests, so that they can deal with the case of requests that
are never answered. The host will need to do this for everything sent to the module, since it always expects at
least a status response. The module only needs to do it for the Req_T_C request, and possibly for a Delete T C
request.

The number of transport connections is limited, so both host and module need to be able to deal with the possi-
bility that all transport gonnectionsiarelinuse when another needs to be/created.

There may be protocol errors, thats; the reception of an imexpected transport packet, due to a faulty implemen-
tation in host or module. Probably the easiest way to deal with this is to close down the transport connection,
since protocol errors probably mean that the connection is unusable anyway.

Since this is consumier equipment, then'it may be best to fail silently, though perhaps a simple display to the user
that module X is faulty may help.

6.2.4. Recommended Parameter Settings

The host should apply a timeout of 300 ms on all messages sent to the module. The module should apply a
timeout of 300 ms on Req T Cand Delete T C messages.

7. SESSION LAYER

7.1. Rationale

This layer provides the mechanism by which applications gain access to the resources they want to use. The
information needed to effectively use this mechanism is collected and managed by a Resource Manager in the
host. The idea of a resource profile was developed very early on in discussions during development of the inter-
face. However it was only at a late stage that this concept was fully worked out and tied together with the
Session layer as its providing mechanism. The resource concept is central to the extensibility of the Application
layer, and the Session layer protocol allows hosts to handle transactions to a resource provided by another mod-
ule without needing to know anything about the resource other than its identifier and the transport connection
over which the resource is provided.



	@á�SùùòÚŸ˚®ŸÝ
�¾dÎ&_X
óº�IłP⁄ñdëzCáÍ~ÇyC»–O†8®+˜⁄H5"Þ2�0pÁäRý~•B«˜þïÀe…ÖcíH.¥—%ž

