

https://standards.iteh.ai/catalog/standards/iso/6866ead7-3be4-4af4-909f-b21003bedf8f/iso-4937-2024

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 4937:2024

https://standards.iteh.ai/catalog/standards/iso/6866ead7-3be4-4af4-909f-b21003bedf8f/iso-4937-2024

COPYRIGHT PROTECTED DOCUMENT

© ISO 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

Contents

Forev	vord	iv
1	Scope	
2	Normative references	
3	Terms and definitions	
4	Principle	
5	Reagents	
6	Apparatus	
7	Sampling and sample preparation	5
8	Procedure 8.1 Test portion 8.2 Blank test 8.3 Determination 8.3.1 Preparation of the test solution 8.3.2 Oxidation of chromium and preparation for titration 8.3.3 Titration	
9	Expression of results 9.1 Method of calculation 9.1.1 Potentiometric titration 9.1.2 Visual titration 9.2 Precision	
10	Test report	
Anne	A (informative) Additional information on the international interlaboratory precision tests	
Anne	B (informative) Graphical representation of precision data	
Bibliography		
	s://standards.iteh.ai/catalog/standards/iso/6866ead7-3be4-4af4-909f-b21003bedf8f/iso-4937-2	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 17, *Steel*, Subcommittee SC 1, *Methods of determination of chemical composition*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 459/SC 2, *Methods of chemical analysis for iron and steel*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This second edition cancels and replaces the first edition (ISO 4937:1986), which has been technically revised. $\underline{|SO|4937:2024}$

https://standards.iteh.ai/catalog/standards/iso/6866ead7-3be4-4af4-909f-b21003bedf8f/iso-4937-2024 The main changes are as follows:

- introduction of an optional electrode;
- re-assessment of the precision data;
- re-confirmation of upper limit of vanadium content in test portions for visual titration.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Steel and iron — Determination of chromium content — Potentiometric or visual titration method

1 Scope

This document specifies a method for the determination of chromium in steel and iron by potentiometric or visual titration.

The method is applicable to chromium contents between 0,25 % (mass fraction) and 35 % (mass fraction). If vanadium is present, the visual titration is applicable only to test portions containing less than 3 mg of vanadium.

NOTE The visual titration can be applicable to test portion containing between 3 mg and 6 mg of vanadium.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 385, Laboratory glassware — Burettes CII Standar

ISO 648, Laboratory glassware — Single-volume pipettes

ISO 1042, Laboratory glassware – One-mark volumetric flasks

ISO 3696, Water for analytical laboratory use — Specification and test methods

ISO 14284, Steel and iron — Sampling and preparation of samples for the determination of chemical composition https://standards.iteh.ai/catalog/standards/iso/6866ead7-3be4-4a14-9091-b21003bed181/iso-4937-2024

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

4 Principle

Dissolution of a test portion with appropriate acids.

Oxidation of chromium in an acid medium to chromium(VI) by ammonium peroxydisulfate in the presence of silver sulfate. Reduction of manganese(VII) by hydrochloric acid.

Reduction of chromium(VI) by an ammonium iron(II) sulfate standard solution.

In the case of potentiometric detection, determination of the equivalence point by measurement of the potential variation when the ammonium iron(II) sulfate standard solution is being added.

In the case of visual detection, titration the excess of ammonium iron(II) sulfate by a potassium permanganate standard solution which also acts as the indicator.

5 Reagents

During the analysis, unless otherwise stated, use only reagents of recognized analytical grade and only grade 2 water as specified in ISO 3696.

- 5.1 Urea.
- **5.2 Perchloric acid**, ρ approximately 1,67 g/ml.
- **5.3** Hydrofluoric acid, *ρ* approximately 1,15 g/ml.
- **5.4 Phosphoric acid**, *ρ* approximately 1,70 g/ml.
- **5.5** Nitric acid, ρ approximately 1,40 g/ml.
- **5.6 Hydrochloric acid**, ρ approximately 1,19 g/ml, diluted 1 + 1.
- **5.7** Hydrochloric acid, ρ approximately 1,19 g/ml, diluted 1 + 10.
- **5.8** Sulfuric acid, ρ approximately 1,84 g/ml, diluted 1 + 1.
- **5.9** Sulfuric acid, ρ approximately 1,84 g/ml, diluted 1 + 5.
- **5.10** Sulfuric acid, ρ approximately 1,84 g/ml, diluted 1 + 19.
- 5.11 Silver sulfate, 5 g/l. (https://standards.iteh.ai)
- 5.12 Ammonium peroxydisulfate [(NH₄)₂S₂O₈], 500 g/l.

Prepare this solution immediately before use.

ISO 4937:2024

- 5.13 Manganese sulfate (MnSO₄·H₂O), 4 g/l. 0/6866ead7-3be4-4af4-909f-b21003bedf8f/iso-4937-2024
- **5.14 Manganese sulfate**, 100 g/l.
- **5.15** Potassium permanganate, 5 g/l.
- **5.16** Sodium nitrite, 3 g/l.

Prepare this solution immediately before use.

5.17 Sulfamic acid (NH_2SO_3H), 100 g/l.

This solution remains stable for one week only.

5.18 Potassium permanganate, standard solution.

5.18.1 Preparation of the solution

Dissolve 3,2 g of potassium permanganate in 1 000 ml of water. After storage in complete darkness for 2 weeks, filter through a thick fritted filter without washing. Keep the solution in a coloured glass bottle and avoid contact with organic matter.

5.18.2 Standardization of the solution

Boil 250 ml of sulfuric acid (5.10) in a 600 ml beaker for 10 min and allow to cool. Weigh, to the nearest 0,000 1 g, 0,300 0 g of sodium oxalate $[Na_2(COO)_2]$ previously dried at 105 °C and cooled in a desiccator.

Dissolve the salt in the boiled sulfuric acid (5.10). Add 39 ml to 40 ml of potassium permanganate solution (5.18.1) at a rate of 25 ml/min to 35 ml/min, stirring gently. The violet colour of the permanganate will disappear in approximately 45 s. Heat to 70 °C to 75 °C and complete the titration.

Towards the end, titrate very slowly and allow each drop to become colourless before adding the next.

To determine the blank test, titrate 250 ml of sulfuric acid (5.10), as described above, concurrently.

The concentration (ρ_2) of the potassium permanganate standard solution, expressed as milligrams of chromium per millilitre, is given by the Formula (1).

$$\rho_2 = \frac{300,0 \times 1,733}{6,700 \times (V_1 - V_0)} \tag{1}$$

where

- V_1 is the volume, in millilitres, of potassium permanganate solution (5.18.1) used for titrating sodium oxalate;
- V_0 is the volume, in millilitres, of potassium permanganate solution (5.18.1) used for titrating the blank test of sulfuric acid (5.10);
- 6,700 is the molar mass of sodium oxalate divided by 20;
- 1,733 is the mass, in milligrams, of chromium(VI) corresponding to 1 ml of the potassium dichromate standard reference solution (5.20);
- 300,0 is the mass, in milligrams, of sodium oxalate weighed.

5.19 Ammonium iron(II) sulfate $[Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O]$, standard solution in sulfuric acid medium.

1 ml of this solution corresponds to about 2 mg of chromium.be4-4af4-909f-b21003bedf8f/iso-4937-2024

5.19.1 Preparation of the solution

Dissolve 46 g of ammonium iron(II) sulfate hexahydrate in about 500 ml of water, add 110 ml of sulfuric acid (<u>5.8</u>), allow to cool, dilute to 1 000 ml with water and mix.

5.19.2 Potentiometric standardization of the solution (to be carried out just before use)

Transfer 30,0 ml of the potassium dichromate standard reference solution (5.20), into a 600 ml beaker, add 45 ml of sulfuric acid (5.9) and make up to about 400 ml with water.

Titrate according to the conditions specified in <u>8.3.3.1</u>.

The corresponding concentration (ρ_1) of ammonium iron(II) sulfate solution (<u>5.19.1</u>), expressed in milligrams of chromium per millilitre, is given by the <u>Formula (2)</u>.

$$\rho_1 = \frac{30,0 \times 1,733}{V_2} \tag{2}$$

where

- V_2 is the volume, in millilitres, of ammonium iron(II) sulfate solution (5.19.1) used for the standardization;
- 30,0 is the volume, in millilitres, of the potassium dichromate standard reference solution (5.20) taken for the standardization;
- 1,733 is the mass, in milligrams, of chromium corresponding to 1 ml of the potassium dichromate standard reference solution (5.20).

5.19.3 Visual standarization of the solution (to be carried out just before use)

Take 25,0 ml of ammonium iron(II) sulfate solution (5.19.1) and add 325 ml of sulfuric acid (5.10).

Titrate with the potassium permanganate standard solution (5.18) until a slight violet colour persists.

To determine the blank test, titrate a mixture of 25 ml of water and 325 ml of sulfuric acid (5.10) with the potassium permanganate standard solution (5.18).

The corresponding concentration (ρ'_1) of the ammonium iron(II) sulfate standard solution (<u>5.19</u>), expressed in milligrams of chromium per millilitre, is given by the <u>Formula (3)</u>.

$$\rho'_1 = \rho_2 \times \frac{V_3 - V_0}{25,0} \tag{3}$$

where

iTeh Standards

- ρ_2 is the concentration of the potassium permanganate standard solution (5.18), expressed as milligrams of chromium per millilitre;
- V_3 is the volume, in millilitres, of the potassium permanganate standard solution (5.18) used to oxidize 25 ml of ammonium iron(II) sulfate solution (5.19.1);

25,0 is the volume, in millilitres, of ammonium iron(II) sulfate solution (5.19.1) used for the standardization.

5.20 Potassium dichromate, standard reference solution.

Weigh, to the nearest 0,000 1 g, 4,903 1 g of potassium dichromate previously dried at 150 °C to constant mass and cooled in a desiccator.

Dissolve in water, transfer quantitatively to a 1 000 ml one-mark volumetric flask, dilute to the mark with water and mix.

1 ml of this standard reference solution contains 1,733 mg of Cr.

6 Apparatus

All volumetric glassware shall be class A, in accordance with ISO 385, ISO 648 or ISO 1042 as appropriate.

Ordinary laboratory apparatus and the following shall be used.

6.1 Potentiometric titration device, which permits a difference in potential to be measured with platinum-saturated calomel electrodes or platinum-Ag/AgCl electrodes.

Sampling and sample preparation 7

Sampling and sample preparation shall be carried out in accordance with ISO 14284 or appropriate national standards for steel and cast iron.

Procedure 8

WARNING — Perchloric acid vapour can cause explosions in the presence of ammonia, nitrous fumes or organic matter in general. All evaporations shall be carried out in fume cupboards suitable for use with perchloric acid.

8.1 Test portion

According to the presumed chromium content, weigh, to the nearest 0,001 g, the following mass (m) of the test portion:

- for chromium contents between 0.25 % (mass fraction) and 2 % (mass fraction): approximately 2 g; a)
- for chromium contents between 2 % (mass fraction) and 10 % (mass fraction): approximately 1 g; b)
- for chromium contents between 10 % (mass fraction) and 25 % (mass fraction): approximately 0,5 g; c)
- for chromium contents between 25 % (mass fraction) and 35 % (mass fraction): approximately 0,25 g. d)

Blank test 8.2

In parallel with the determination and following the same procedure, carry out a blank test using the same quantities of all reagents as used for the determination, but omitting the test portion.

8.3 Determination

Preparation of the test solution 8.3.1

Unalloyed steel and iron Unalloyed steel and i 8.3.1.1

Place the test portion (8.1) in a 600 ml beaker, add 60 ml of sulfuric acid (5.9) and 10 ml of phosphoric acid (5.4), and heat to dissolve, then oxidize with 15 ml of nitric acid (5.5). Heat until dense white fumes are given off, allow to cool and then add 100 ml of water.

To accelerate the dissolution of a test portion which has a high silicon content, a few drops of hydrofluoric acid (5.3) may be added.

The dissolution procedures may be incomplete for particular samples (for example samples with high contents of carbon). In such cases, a fusion of the residue is required, and the product of this fusion shall be added to the test solution.

Chromium and/or nickel alloyed steel and iron 8.3.1.2

Place the test portion (8.1) in a 600 ml beaker, add 25 ml of hydrochloric acid (5.6) and heat to dissolve, then oxidize with 15 ml of nitric acid (5.5). If dissolution proves to be particularly difficult, add 1 ml to 2 ml of hydrofluoric acid (5.3). Then add 20 ml of sulfuric acid (5.8) and 10 ml of phosphoric acid (5.4), and heat until dense white fumes appear.

After cooling, add a further 15 ml of nitric acid (5.5) to the fuming solution, if necessary making further additions, until the carbides have completely decomposed. Continue fuming to remove completely oxides of nitrogen then allow to cool and add 100 ml of water.

ISO 4937:2024(en)

The dissolution procedures may be incomplete for particular samples (for example samples with high contents of chromium and carbon). In such cases, a fusion of the residue is required and the product of this fusion shall be added to the test solution.

8.3.1.3 Steel containing tungsten

Place the test portion (8.1) in a 600 ml beaker, add 25 ml of hydrochloric acid (5.6) then 20 ml of sulfuric acid (5.8) and 10 ml of phosphoric acid (5.4) and heat until effervescence has ceased. If dissolution proves to be particularly difficult, add 1 ml to 2 ml of hydrofluoric acid (5.3). Oxidize with 15 ml of nitric acid (5.5) then heat until dense white fumes appear.

After cooling, add a further 15 ml of nitric acid (5.5) to the fuming solution, if necessary making further additions, until the carbides have completely decomposed. Continue fuming to remove completely oxides of nitrogen then allow to cool and add 100 ml of water.

The dissolution procedures may be incomplete for particular samples (for example samples with high contents of chromium and carbon). In such cases a fusion of the residue is required, and the product of this fusion shall be added to the test solution.

8.3.1.4 High alloyed steel and iron, or steel and iron with high silicon content

Place the test portion (8.1) in a 750 ml conical flask, and add 20 ml of hydrochloric acid (5.6), 10 ml of nitric acid (5.5) and 1 ml of hydrofluoric acid (5.3).

When effervescence has ceased, add 30 ml of perchloric acid (5.2). Heat until white fumes are given off, cover with a watch-glass and continue to heat until the alloy is completely dissolved (the white fumes being retained in the flask). Allow to cool.

Add 30 ml of water, boil for 5 min, and allow to cool. Transfer quantitatively into a 600 ml beaker and add 20 ml of sulfuric acid (5.8), 10 ml of phosphoric acid (5.4) and 70 ml of water.

The dissolution procedures may be incomplete for particular samples (for example samples with high contents of chromium and carbon). In such cases a fusion of the residue is required, and the product of this fusion shall be added to the test solution.

ISO 4937:2024

8.3.2ps Oxidation of chromium and preparation for titration 4af4-909f-b21003bedf8f/iso-4937-2024

If necessary, to remove graphite, filter the test solution through a cellulose-pulp-lined filter and wash with sulfuric acid (5.10). Dilute to about 350 ml with warm water, and add 20 ml of silver sulfate (5.11) and 10 ml of ammonium peroxydisulfate (5.12). Cover the beaker with a watch-glass and boil for 10 min. The violet colour of the permanganic acid will be observed. If the test portion contains only a very small amount of manganese, add about 5 ml of manganese sulfate (5.13), so that the permanganic acid is visible.

Then, decompose the permanganic acid by adding to the solution, after it has been brought to the boil, firstly 15 ml of hydrochloric acid (5.7), then, after about 3 min, if necessary a further amount of hydrochloric acid (5.7), drop by drop, until the violet colour disappears. The addition of hydrochloric acid (5.7) shall be made after complete oxidation, visible by the violet colour-formation of the permanganic acid. Boil for 10 min until the odour from the chlorine compounds formed disappears. In the case of a visual titration (8.3.3.2), after the decomposition of the permanganic acid and after boiling for 10 min, it is necessary to add 4 ml of manganese sulfate (5.14), then boil for a further 3 min. Cool rapidly to room temperature.

8.3.3 Titration

8.3.3.1 Potentiometric titration

8.3.3.1.1 In the absence of vanadium

Place the electrodes of the potentiometric device (6.1) into the beaker containing the solution (8.3.2) to be titrated.