FINAL DRAFT

INTERNATIONAL STANDARD

ISO/FDIS 11424

ISO/TC **45**/SC **1**

Secretariat: **DIN**

Voting begins on: 2023-04-14

Voting terminates on: 2023-06-09

Rubber hoses and tubing for air and vacuum systems for internalcombustion engines — Specification

Tuyaux et tubes en caoutchouc pour systèmes d'aération et à vide des moteurs à combustion interne — Spécifications

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 11424

https://standards.iteh.ai/catalog/standards/sist/6d521f0f-944b-4fda-a666-4fcd8a69a157/iso-fdis-11424

RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-LOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STAN-DARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS.

Reference number ISO/FDIS 11424:2023(E)

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO/FDIS 11424

https://standards.iteh.ai/catalog/standards/sist/6d521f0f-944b-4fda-a666-4fcd8a69a157/isofdis-11424

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Page

Contents

For	reword	iv
1	Scope	
2	Normative references	
3	Terms and definitions	2
4	Classification 4.1 Types 4.2 Classes	2 2 2
5	Hose and tubing bores	
6	Dimensions and tolerances6.1Hoses6.2Tubing	
7	Requirements for physical properties7.1Rubber compounds	4

Classification 4.1 Types 4.2 Classes Hose and tubing bores

6	Dime	ensions and tolerances	
	6.1	Hoses	
	6.2	Tubing	
7	Requ	irements for physical properties	4
	7.1	Rubber compounds	
		7.1.1 Selection of test pieces	
		7.1.2 Hardness	
		7.1.3 Tensile strength and elongation at break	
		7.1.4 Change in properties after heat-ageing	
		7.1.5 Compression set	
		7.1.6 Resistance to oxygenated fuels	
		7.1.7 Resistance to oil No.3	5
	7.2	Hose and tubing 7.2.1 Proof pressure	
		7.2.1 Proof pressure	
		7.2.2 Minimum burst pressure	
		7.2.3 Adhesion ISO/EDIS 11424	
		7.2.5 Low-temperature flexibility after heat-ageing	
		7.2.6 Amount of extractable products	6
		7.2.7 Tear resistance	
		7.2.8 Vacuum resistance (only for Type A)	
		7.2.9 Resistance to kinking	
	7.3	Requirement for all classes	
8	Freq	uency of testing	
9	_	cing	
10		ommendations for packaging and storage	
Anne		prmative) Type and routine tests	
		formative) Recommended production tests	
Bibli	ograpł	ly	

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 45, *Rubber and rubber products*, Subcommittee SC 1, *Rubber and plastics hoses and hose assemblies*.

This third edition cancels and replaces the second edition (ISO 11424:2017), of which it constitutes a minor revision. The change is that the normative references have been updated.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at <u>www.iso.org/members.html</u>.

Rubber hoses and tubing for air and vacuum systems for internal-combustion engines — Specification

1 Scope

This document specifies requirements for rubber hoses and tubing for use in the various air and vacuum systems found on internal combustion engines. This document does not cover hoses used for direct power-brake actuation in trucks and trailers, nor for air intakes and ducting within the passenger compartment. The highest-temperature hoses are generally used for turbocharger applications. All hoses and tubing remain serviceable down to -40 °C.

NOTE Although the term vacuum is generally used, in reality the application is one of reduced air pressure used for the purposes of actuation or monitoring of the various engine-system components. The air carried by the tubing or hoses can be clean and free of contaminants but can also contain oil, fuel and their vapours as contamination, due to the particular installation and application.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 37:2017, Rubber, vulcanized or thermoplastic — Determination of tensile stress-strain properties

ISO 48-2, Rubber, vulcanized or thermoplastic — Determination of hardness — Part 2: Hardness between 10 IRHD and 100 IRHD

ISO 188, Rubber, vulcanized or thermoplastic — Accelerated ageing and heat resistance tests

ISO 815-1:2019, Rubber, vulcanized or thermoplastic — Determination of compression set — Part 1: At ambient or elevated temperatures

ISO 1402, Rubber and plastics hoses and hose assemblies — Hydrostatic testing

ISO 1629, Rubber and latices — Nomenclature

ISO 1817:2022, Rubber, vulcanized or thermoplastic — Determination of the effect of liquids

ISO 3302-1, Rubber — Tolerances for products — Part 1: Dimensional tolerances

ISO 4671, Rubber and plastics hoses and hose assemblies — Methods of measurement of the dimensions of hoses and the lengths of hose assemblies

ISO 7233:2021, Rubber and plastics hoses and hose assemblies — Determination of resistance to vacuum

ISO 7326, Rubber and plastics hoses — Assessment of ozone resistance under static conditions

ISO 8033, Rubber and plastics hoses — Determination of adhesion between components

ISO 8330, Rubber and plastics hoses and hose assemblies — Vocabulary

ISO 10619-1:2017, Rubber and plastics hoses and tubing — Measurement of flexibility and stiffness — Part 1: Bending tests at ambient temperature

ISO 10619-2:2021, Rubber and plastics hoses and tubing — Measurement of flexibility and stiffness — Part 2: Bending tests at sub-ambient temperatures

ISO 19013-1:2019, Rubber hoses and tubing for fuel circuits for internal combustion engines — Specification — Part 1: Diesel fuels

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 8330 and the abbreviated terms given in ISO 1629 apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

4 Classification

4.1 Types

Type A refers to internally reinforced hose with a working pressure up to 0,3 MPa (3 bar).

Type B refers to homogeneous tube with a working pressure up to 0,12 MPa (1,2 bar).

4.2 Classes

Class 1 refers to long-term working temperature up to 70 °C; maximum working temperature up to 100 °C. It is not recommended for applications where resistance to oils, fuel and their vapours is required.

NOTE 1 Typically, styrene-butadiene rubber (SBR) can be used.

Class 2 refers to long-term working temperature up to 100 °C; maximum working temperature up to 125 °C. It is resistant to oils and their vapours. fdis-1424

NOTE 2 Typically, chloroprene rubber (CR) can be used.

Class 3 refers to long-term working temperature up to 100 °C, maximum working temperature up to 125 °C. It is resistant to oils, fuels and their vapours.

NOTE 3 Typically, acrylonitrile-butadiene rubber (NBR) can be used.

Class 4 refers to long-term working temperature up to 125 °C, maximum working temperature up to 150 °C. It is not recommended for applications where resistance to oils, fuels and their vapours is required.

NOTE 4 Typically, ethylene-propylene rubber (EPM or EPDM) can be used.

Class 5 refers to long-term working temperature up to 125 °C, maximum working temperature up to 150 °C. It is resistant to oils and their vapours.

NOTE 5 Typically, chlorinated or chlorosulfonated polyethylene (CM or CSM) can be used.

Class 6 refers to long-term working temperature up to 125 °C, maximum working temperature up to 150 °C. It is resistant to oils, fuels and their vapours.

NOTE 6 Typically, epichlorohydrin or hydrogenated nitrile rubbers (CO, ECO or HNBR) can be used.

Class 7 refers to long-term working temperature up to 150 °C, maximum working temperature up to 175 °C. It is not recommended for applications where resistance to oils, fuels and their vapours is required.

NOTE 7 Typically, silicone rubber (VMQ) can be used.

Class 8 refers to long-term working temperature up to 150 °C, maximum working temperature up to 175 °C. It is resistant to oils and their vapours.

NOTE 8 Typically, acrylic rubber (ACM or AEM) can be used.

Class 9 refers to long-term working temperature up to 150 °C, maximum working temperature up to 175 °C. It is resistant to oils, fuels and their vapours.

NOTE 9 Typically, fluoroelastomer or fluorosilicone rubbers (FKM or FVMQ) can be used.

Class 10 refers to long-term working temperature up to 175 °C, maximum working temperature up to 200 °C. It is resistant to oils and their vapours.

NOTE 10 Typically, fluoroelastomer or fluorosilicone rubbers (FKM or FVMQ) can be used.

Hoses are thus designated with a two-character descriptor such as type A4 or type B6, etc.

In cases where type A hose cover and lining are manufactured from materials of different classes, a three-character descriptor shall be used thus: Type A9/5 where the second character describes the lining material and the third character describes the cover material.

Similarly, where type B tubing is of a composite construction, a three-character descriptor is also used thus: Type B3/2.

5 Hose and tubing bores

The bore of all hoses and tubing shall be clean and free from any contamination when examined visually.

standards.iteh.ai)

6 Dimensions and tolerances

ISO/FDIS 11424

6.1 Hoses https://standards.iteh.ai/catalog/standards/sist/6d521f0f-944b-4fda-a666-4fcd8a69a157/iso-

When determined by the methods described in ISO 4671, the dimensions and tolerances shall comply with the values given in <u>Table 1</u>.

6.2 Tubing

When determined by the methods described in ISO 4671, bore diameters and wall thicknesses shall be as given in <u>Table 2</u>. Tolerances shall be selected from the appropriate categories given in ISO 3302-1.

Nominal bore	Inside diameter (ID)	Tolerance on ID	Wall thickness	Outside diameter (OD)	Tolerance on OD
	mm	mm	mm	mm	mm
3,5	3,5	±0,3	3,0	9,5	
4	4,0		3,0	10,0	
5	5,0		3,0	11,0	
6	6,0		3,0	12,0	
7	7,0		3,0	13,0	10.4
7,5	7,5		3,0	13,5	±0,4
8	8,0		3,0	14,0	
9	9,0		3,0	15,0	
11	11,0		3,5	18,0	
12	12,0		3,5	19,0	

Table 1 — Hose dimensions and tolerances

Nominal bore	Nominal wall thickness mm
2	2
2,5	3
4	3,5
5	4
7 to 13	4,5

Table 2 — Nominal bore diameters and wall thickness of tubing

7 Requirements for physical properties

7.1 Rubber compounds

7.1.1 Selection of test pieces

Tests shall be carried out where possible on test pieces cut from finished products. Where this is not possible, test pieces shall be cut from standard test slabs with a state of cure equivalent to that of the finished product. Compression set determination shall always be carried out on standard test slabs for both cover and lining of hoses and on the compound used for the tubing.

7.1.2 Hardness iTeh STANDARD PREVIEW

Hardness, determined in accordance with the procedure in ISO 48-2, shall comply with the values given in <u>Table 3</u>.

7.1.3 Tensile strength and elongation at break

Tensile strength and elongation at break, determined in accordance with ISO 37:2017 using a Type 2 dumb-bell test piece, shall comply with the values given in <u>Table 3</u>.

7.1.4 Change in properties after heat-ageing

The change in hardness, tensile strength and elongation at break, after heat-ageing in accordance with ISO 188 in a ventilated drying oven under the conditions given in a) and b) below, using test pieces as described in <u>7.1.2</u> and <u>7.1.3</u>, shall comply with the values given in <u>Table 3</u>:

- Class 1:
 - a) (70^{+2}_{0}) h at 100 °C;
 - b) 1 000 h ± 5 h at 70 °C;
- Classes 2 and 3:
 - a) (70^{+2}_{0}) h at 125 °C;
 - b) 1 000 h ± 5 h at 100 °C;
- Classes 4, 5 and 6:
 - a) (70^{+2}_{0}) h at 150 °C;
 - b) 1 000 h ± 5 h at 125 °C;
- Classes 7, 8 and 9:

- a) (70^{+2}_{0}) h at 175 °C;
- b) 1 000 h ± 5 h at 150 °C;
- Class 10:
 - a) (70^{+2}_{0}) h at 200 °C;
 - b) 1 000 h ± 5 h at 175 °C.

7.1.5 Compression set

Compression set, when determined in accordance with ISO 815-1:2019, using the Type A test piece and the following conditions, shall comply with the values given in <u>Table 3</u>:

- Class 1: (70^{+2}_{0}) h at 70 °C;
- Classes 2 and 3: (70^{+2}_{0}) h at 100 °C;
- Classes 4, 5 and 6: (70^{+2}_{0}) h at 125 °C;
- Classes 7, 8 and 9: (70^{+2}_{0}) h at 150 °C;
- Class 10: (70^{+2}_{0}) h at 175 °C.

7.1.6 Resistance to oxygenated fuels

This requirement applies only to the lining of type A hoses and to type B tubing for classes 3, 6 and 9.

Any changes in properties after a period of (70^{+2}_{0}) h of immersion in a mixture of 85 parts by volume of liquid C (see ISO 1817:2015) and 15 parts by volume of methanol at 23 °C ± 2 °C when determined in accordance with ISO 1817:2015, shall comply with the values given in <u>Table 3</u>.

7.1.7 Resistance to oil No.3

This requirement applies only to the cover and lining of type A hoses and to type B tubing for classes 2, 3, 5, 6, 8, 9 and 10.

Any change in properties after a period of (70^{+2}_{0}) h of immersion in oil No.3 at one of the following temperatures, when determined in accordance with ISO 1817, shall comply with the values given in Table 3:

- Classes 2 and 3: 100 °C ± 2 °C;
- Classes 5 and 6: 125 °C ± 2 °C;
- Classes 8, 9 and 10: 150 °C ± 2 °C.

7.2 Hose and tubing

7.2.1 Proof pressure

When tested in accordance with ISO 1402 at the proof pressure given in <u>Table 3</u>, no leakage or other signs of weakness shall be shown.

ISO/FDIS 11424:2023(E)

7.2.2 Minimum burst pressure

When tested in accordance with ISO 1402, minimum burst pressures shall comply with the values given in <u>Table 3</u>.

7.2.3 Adhesion

This requirement applies to type A hoses of all classes.

The adhesion between hose cover and lining, when determined in accordance with ISO 8033, shall comply with the values given in <u>Table 3</u>.

7.2.4 Ozone resistance

When determined in accordance with ISO 7326, under the following conditions, the ozone resistance shall comply with the requirement given in <u>Table 3</u>:

- ozone concentration: 50 mPa ± 5 mPa;
- duration: (70^{+2}_{0}) h;
- elongation: 20 %;
- temperature: 40 °C ± 2 °C.

7.2.5 Low-temperature flexibility after heat-ageing **DPREVIEW**

The low-temperature flexibility after heat-ageing shall be in accordance with the requirement given in Table 3.

The test shall be carried out in accordance with ISO 10619-2:2021, Method B, after 24 h at -40 °C \pm 2 °C, with the bend radius 12 times the nominal bore for hoses and 25 times the nominal bore for tubing, on hoses and tubing heat-aged under set of conditions b) specified for their class in <u>7.1.4</u>.

7.2.6 Amount of extractable products

The amount of extractable products, determined in accordance with ISO 19013-1:2019, Annex A, using a mixture of 85 parts by volume of liquid C (see ISO 1817:2015) and 15 parts by volume of methanol, shall comply with the values given in Table 3.

7.2.7 Tear resistance

This requirement only applies to type B tubing.

The resistance to tearing determined in accordance with ISO 19013-1:2019, Annex B, shall comply with the value given in <u>Table 3</u>.

7.2.8 Vacuum resistance (only for Type A)

The vacuum resistance shall be in accordance with the requirements given in <u>Table 3</u>.

The test shall be carried out on straight hoses only, in accordance with ISO 7233:2021, Method A, under the following conditions:

- test pressure:
 - 80 kPa \pm 1 kPa below atmospheric pressure for ID \leq 10 mm;
 - 35 kPa ± 1 kPa below atmospheric pressure for ID > 10 mm;
- duration: 15 s to 60 s;