

SLOVENSKI STANDARD SIST EN ISO 945:1997

01-maj-1997

@hc "ÿY Ync "! CnbU Yj Ub Y a]_fcglfi _hi fY [fUZ]hU

Cast iron - Designation of microstructure of graphite (ISO 945:1975)

Gußeisen - Bestimmung der Mikrostruktur von Graphit (ISO 945:1975)

Fonte - Désignation de la microstructure du graphite (ISO 945:1975)

Ta slovenski standard je istoveten z: (standards iteh.ai) EN ISO 945:1994

SIST EN ISO 945:1997

https://standards.iteh.ai/catalog/standards/sist/89628127-8200-4126-8100-78c21bd84d1e/sist-en-iso-945-1997

ICS:

77.080.10 Železo Irons

SIST EN ISO 945:1997 en

SIST EN ISO 945:1997

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 945:1997

https://standards.iteh.ai/catalog/standards/sist/89628127-8200-4126-8100-78c21bd84d1e/sist-en-iso-945-1997

EUROPEAN STANDARD

EN ISO 945

NORME EUROPÉENNE

EUROPÄISCHE NORM

July 1994

UDC 669.13:620.186:546.26-162

Descriptors:

cast iron, graphite, microstructure, designation, microscopic analysis

English version

Cast iron - Designation of microstructure of graphite (ISO 945:1975)

Fonte - Désignation de la microstructure du DARD PR Gußeisen - Bestimmung der Mikrostruktur von graphite (ISO 945:1975)

(standards.iteh.ai)

SIST EN ISO 945:1997

https://standards.iteh.ai/catalog/standards/sist/89628127-8200-4126-8100-78c21bd84d1e/sist-en-iso-945-1997

This European Standard was approved by CEN on 1994-07-05. CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.

Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

The European Standards exist in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

Central Secretariat: rue de Stassart, 36 B-1050 Brussels

Page 2 EN ISO 945:1994

... Foreword

This European Standard was taken over by the Technical Committee CEN/TC 190 "Foundry technology" from the work of ISO/TC 25 "Cast iron - Designation of microstructure of graphite" of the International Standards Organization (ISO).

CEN/TC 190 had decided to submit the final draft for Formal Vote. The result was positive.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 1995, and conflicting national standards shall be withdrawn at the latest by January 1995.

According to the CEN/CENELEC Internal Regulations, the following countries are bound to implement this European Standard: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom.

Endorsement notice iTeh STANDARD PREVIEW

The text of the International Standard ISQ 945:1975 was approved by CEN as a European Standard without any modification.

SIST EN ISO 945:1997 https://standards.iteh.ai/catalog/standards/sist/89628127-8200-4126-8100-78c21bd84d1e/sist-en-iso-945-1997

INTERNATIONAL STANDARD

945

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION-МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ-ORGANISATION INTERNATIONALE DE NORMALISATION

Cast iron — Designation of microstructure of graphite

Fonte - Désignation de la microstructure du graphite

First edition - 1975-11-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST EN ISO 945:1997 https://standards.iteh.ai/catalog/standards/sist/89628127-8200-4126-8100-78c21bd84d1e/sist-en-iso-945-1997

UDC 669.13: 003.62 Ref. No. ISO 945-1975 (E)

Descriptors: cast iron, graphite, microstructure, designation, microscopic analysis.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

Prior to 1972, the results of the work of the Technical Committees were published as ISO Recommendations; these documents are now in the process of being transformed into International Standards. As part of this process Technical Committee ISO/TC 25 has reviewed ISO Recommendation R 945 and found it technically suitable for transformation. International Standard ISO 945 therefore replaces ISO Recommendation R 945-1969 to which it is technically identical.

Portugal

Romania

South Africa, Rep. of

ISO Recommendation R 945 was approved by the Member Bodies of the following countries:

Belgium Greece
Brazil India
Canada Ireland
Chile Israel

ChileIsraelSwedenCzechoslovakiaItalySwitzerlandEgypt, Arab Rep. ofKorea, Rep. ofThailand

Finland Netherlands Turkey
France Norway United Kingdom
Germany Poland Yugoslavia

No Member Body expressed disapproval of the Recommendation.

The Member Bodies of the following countries disapproved the transformation of ISO/R 945 into an International Standard :

Sweden Switzerland

Cast iron — Designation of microstructure of graphite

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies a method of designating the microstructure of graphite in cast iron. It is not intended as a basis for acceptance specifications.

2 GENERAL

- 2.1 When iron-carbon alloys are examined under a containing high silicon.
 microscope, the graphite occurring in these alloys can be classified by

 Teh STANDARD MICROSCOPIC EXAMINATION
 - a) its form (designated by roman numerals, see figure 1);
 - b) its distribution (designated by capital letters, see figure 2); SISTEN IS
 - https://standards.iteh.ai/catalog/standards c) its size (designated by arabic numerals, see figures 3e/sist-e to 6).
- 2.2 The three series of reference diagrams included in this International Standard for evaluating the type of graphite form a basis for such a classification. The characteristic features of the graphite which occur are designated by letters and numerals. For this purpose, microstructures of graphite are arranged side by side in the series. Form, distribution and size of the graphite observed are determined by comparison with the diagrams and the allocation of the same classification as that of the diagrams that resemble them most closely. This method permits quick identification of the graphite, promotes mutual understanding between technicians in this field, permits clear representation of the findings, facilitates statistical analysis and saves a vast amount of photographic work.
- **2.3** The comparison of the graphite observed with the three series of reference diagrams in figures 1 to 6 does not give any information on the suitability of the iron-carbon alloys for any particular service.

3 SAMPLING AND PREPARATION OF SPECIMENS

3.1 When taking specimens from the casting, it is essential that attention be paid to the location, to the wall thickness, to the distance from the surface and to the presence of chills and the like. The location of the surface examined shall be carefully recorded in any report.

3.2 The area of polished surface shall be sufficient to give a true representation of the graphite distribution. Attention shall be paid to the careful grinding and polishing of the specimens in order that the graphite particles appear in their true form and size. The examination of the graphite under the microscope is usually carried out on the unetched polished section, though final etching is recommended in the case of some special alloy cast irons, for example those containing high silicon.

4.1 The polished specimens shall be viewed under a microscope so that the entire polished area may be examined. A comparison shall first be made with the reference diagrams for the graphite form and distribution (see figures 1 and 2) and the microstructures observed shall then be identified from the corresponding reference diagrams. Following this, the size of the graphite particles shall be determined at a magnification of 100 diameters, by

reference to figures 3 to 6 inclusive and/or the table.

- **4.2** Examination under the microscope can be carried out by direct observation or by projection on the ground glass of the microscope. The field of view shall have approximately the same size as the reference diagrams (about 80 mm diameter).
- 4.3 The measurement of the graphite particles can be facilitated by the use of suitable calibrated eye-pieces.
- 4.4 The method described above gives good results, but any other method of examination which gives good results may be used.

5 REFERENCE DIAGRAMS

A series of reference diagrams is provided for form, distribution and size of graphite. The reference diagrams show microstructures of an ideal character instead of actual photomicrographs, thus avoiding the minor effects which might interfere with the results of the observation.

5.1 Reference diagrams for graphite form

The reference diagrams for graphite form (figure 1) show six characteristic forms which are designated by the roman

ISO 945-1975 (E)

numerals I to VI. These represent the principal types of graphite found in cast iron. However, other forms are also known to occur occasionally.

5.2 Reference diagrams for graphite distribution

The reference diagrams for the graphite distribution (figure 2) show five examples designated by the letters A to E.

The diagrams in figure 2 apply to form I graphite. The other forms generally occur in distribution A, but other distributions may sometimes be found.

5.3 Reference diagrams for graphite size

Figures 3 to 6 and the table serve to determine the graphite size. For the 100 diameter reproduction scale, sizes are indicated ranging from a maximum dimension of the particle of > 100 mm (size 1) down to < 1,5 mm (size 8). The size ranges covered by the size reference numbers 3 to 7 inclusive are based on an average particle size which is half that of the larger size range.

6 DESIGNATION OF GRAPHITE BY FORM, DISTRI-**BUTION AND SIZE**

6.1 To characterize the graphite observed, indications are generally necessary on the form, distribution and size of the graphite particles. To this purpose, the roman numerals of N IS figure 1 are used for the form, the capital letters of figure 20/stan for the distribution and the arabic numerals of figure 3 and 4d1e/sist-en-iso-945-19960 % I A 4 + 40 % I D 7 the table for the size, in that order. Thus, for example, type I A 4 means that, with a 100 mm diameter magnification, graphite particles, form I, distribution A, having a maximum dimension of 12 to 25 mm, have been observed.

TABLE - Dimension of the graphite particles forms I to VI

Reference number	Dimension of the particles observed at X 100 magnification	True dimension
	mm	mm
1	> 100	> 1
2	50 to 100	0,5 to 1
3	25 to 50	0,25 to 0,5
4	12 to 25	0,12 to 0,25
5	6 to 12	0,06 to 0,12
6	3 to 6	0,03 to 0,06
7	1,5 to 3	0,015 to 0,03
8	< 1,5	< 0,015

6.2 If the graphite observed lies between two sizes, reference to both is possible (for example 3/4).

In a given case the predominating size may be emphasized by underlining (for example 3/4).

This method can be extended to cover structures where more than two sizes are present.

6.3 Mixed structures with different types of graphite may be defined by estimating the percentage proportion of the different types of graphite; for example,

is.iten.ai i

means 60 % graphite of the form I, distribution A and size 4, and 40 % graphite of the form I, distribution D and size 7.

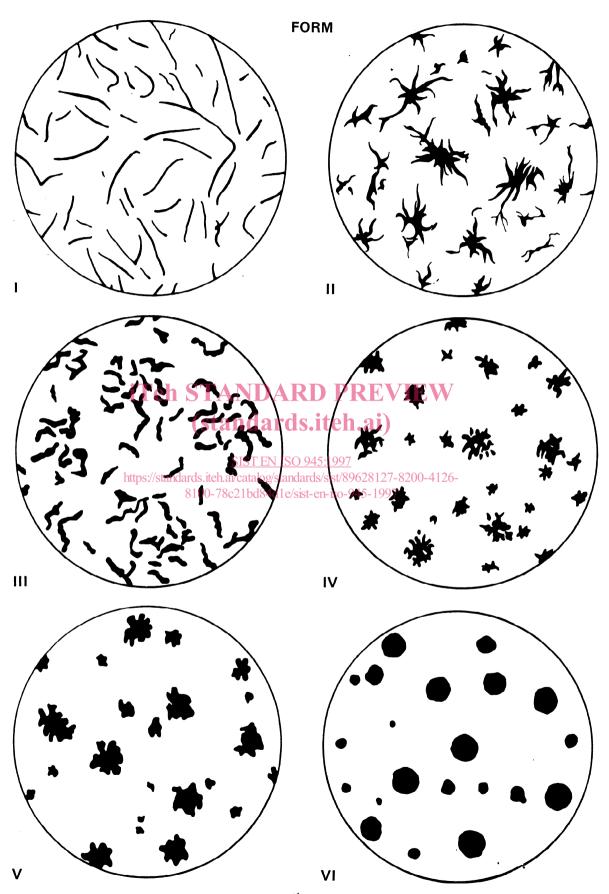


FIGURE 1 - Reference diagrams¹⁾ for the graphite form (Distribution A)

¹⁾ The diagrams show only the outlines and not the structure of the graphite.