

Designation: F2023 – 13

StandardTest Method for Evaluating the Oxidative Resistance of Crosslinked Polyethylene (PEX) Tubing and Systems to Hot Chlorinated Water¹

This standard is issued under the fixed designation F2023; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This test method describes the general requirements for evaluating the long-term, chlorinated water, oxidative resistance of cross-linked polyethylene (PEX) tubing produced in accordance with Specification F876 or PEX tubing/fitting systems in accordance with Specification F877 used in hot-and-cold water distribution systems by exposure to hot, chlorinated water. This test method outlines the requirements of a pressurized flow-through test system, typical test pressures, test-fluid characteristics, failure type, and data analysis.

Note 1—Other known disinfecting systems (chlorine dioxide, ozone, and chloramines) are also used for protection of potable water. Freechlorine is the most common disinfectant in use today. A PPI research project examined the relative aggressiveness of free chlorine and chloramines on PEX pipes, both at the same 4.0 ppm concentration and the same test temperatures. The results of the testing showed pipe failure times approximately 40% longer when tested with chloramines compared to testing with free chlorine, at the tested conditions. Based on these results, the data suggests that chloramines are less aggressive than free chlorine to PEX pipes.

1.2 Guidelines and requirements for test temperatures, test hoop stresses, and other test criteria have been established by prior testing of PEX tubing produced by the three most common commercial methods of cross-linking: silane, peroxide, and electron-beam (see Note 2). Other related system components that typically appear in a PEX hot-and-cold water distribution system can be evaluated with the PEX tubing. When testing PEX tubing and fittings as a system, it is recommended that the anticipated end-use fitting type(s) and material(s) be included in the test circuit since it is known that some fitting types and materials can impact failure times. Specimens used shall be representative of the piping product(s) and material(s) under investigation.

Note 2-The procedures described in this test method (with some modifications of test temperatures or stresses, or both) have been used to

evaluate pipes manufactured from polybutylene (PB), polyethylene (PE), polypropylene (PP), multilayer (polymer-metal composite), copper, and stainless steel.

1.3 This test method is applicable to PEX tubing and systems used for transport of potable water containing freechlorine for disinfecting purposes. The oxidizing potential of the test-fluid specified in this test method exceeds that typically found in potable water systems across the United States.

1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.5 The following precautionary caveat pertains only to the test method portion, Section 12, of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:²
- D1600 Terminology for Abbreviated Terms Relating to Plastics
- D2122 Test Method for Determining Dimensions of Thermoplastic Pipe and Fittings
- F412 Terminology Relating to Plastic Piping Systems
- F876 Specification for Crosslinked Polyethylene (PEX) Tubing
- F877 Specification for Crosslinked Polyethylene (PEX) Hotand Cold-Water Distribution Systems
- F948 Test Method for Time-to-Failure of Plastic Piping Systems and Components Under Constant Internal Pressure With Flow
- 2.2 ISO Standards:
- ISO 9080 Thermoplastic Pipe for Transport of Fluids— Methods of Extrapolation of Hydrostatic Stress Rupture

¹ This test method is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.40 on Test Methods.

Current edition approved Nov. 1, 2013. Published December 2013. Originally approved in 2000. Last previous edition approved in 2010 as F2023 – 10. DOI: 10.1520/F2023-13.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

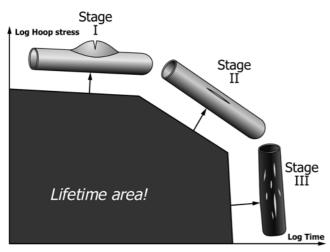


FIG. 1 Pictorial Illustration of Failure Types

Data to Determine the Long Term Strength of Thermoplastic Pipe³

ISO 13760 Plastic Pipe for the Conveyance of Fluids Under Pressure—Miners Rule—Calculation Method for Cumulative Damage³

- TN-16 Rate Process Method for Projecting Performance of Polyethylene Piping Components⁴
- 2.4 American Water Works Association (AWWA) Document: 1996 WATER:\STATS Survey⁵

3. Terminology

3.1 Definitions:

3.1.1 Definitions are in accordance with Terminology F412 and abbreviations are in accordance with Terminology D1600, unless otherwise indicated.

3.1.2 *brittle failure (Stage II), n*—failure in the tubing wall that is characterized by little or no material deformation in the failure area and is the result of a single crack emanating from the interior of the tubing to the outside surface typically resulting in a pinhole leak, see Fig. 1. Brittle failures produced with this test method shall not be used for data analysis.

3.1.3 *ductile failure (Stage I), n*—failure in the tubing wall that is characterized by obvious localized deformation of the material visible with the unaided eye, see Fig. 1. Ductile failures produced with this test method shall not be used for data analysis.

3.1.4 *environmental or oxidative failure (Stage III)*, *n*—failure in the tubing wall characterized by a large number of cracks emanating from the interior surface of the tubing wall, see Fig. 1.

3.1.4.1 *Discussion*—Stage III failures may also be identified by a color shift in the failure area (typically brown or reddish-brown). Identification of oxidative failure, when not obvious by inspection with the unaided eye, can be performed with a $25 \times$ microscope or other similar device yielding the same level of magnification. Only Stage III environmental failures shall be used for data analysis.

3.1.5 *hot-and-cold water distribution system*, *n*—a combination of components such as tubing, fittings, valves, and so forth, that when installed as a complete system, make up the interior water supply system of a commercial or residential structure.

3.1.6 *long-term oxidative resistance, n*—the extrapolated time-to-failure prediction as determined by analysis of time-to-failure test data by multiple linear regression utilizing the rate process method of PPI TN-16 or Model Q of ISO 9080. Where applicable, application of Miners Rule in accordance with ISO 13760 can be used to estimate time-to-failure at several differing conditions of temperature or stress, or both.

3.1.7 *multiple linear regression, n*—a three or four coefficient mathematical model used to analyze time-to-failure data from different temperatures and stresses to extrapolate projected time-to-failure at selected temperatures or stresses.

3.1.8 *Miners Rule, n*—a mathematical method for estimating the cumulative, irreversible damage that results from exposure to each of several differing conditions of stress or temperature, or both.

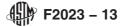
3.1.9 oxidation reduction potential (ORP), n—a measure of the total oxidizing power of a solution by means of a platinum-redox electrode. For a further explanation of ORP see Appendix X2.

3.1.10 *unaided eye*, *n*—observable without visual enhancement beyond correction for normal vision.

4. Summary of Test Method

4.1 The PEX tubing or tubing/fitting assemblies are exposed to pressurized test-fluid until failure. All time-to-fail data used for analysis shall be the result of oxidative degradation (Stage III). A minimum number of test temperature and hoop stress conditions are required to allow accurate data analysis and time-to-failure extrapolations.

5. Significance and Use


5.1 Environment or oxidative time-to-fail data derived from this test method, analyzed in accordance with Section 13, are suitable for extrapolation to typical end-use temperatures and hoop stresses. The extrapolated value(s) provides a relative indication of the resistance of the tested PEX tubing or system to the oxidative effects of hot, chlorinated water for conditions equivalent to those conditions under which the test data were obtained. The performance of a material or piping product under actual conditions of installation and use is dependent upon a number of factors including installation methods, use patterns, water quality, nature and magnitude of localized stresses, and other variables of an actual, operating hot-andcold water distribution system that are not addressed in this test method. As such, the extrapolated values do not constitute a representation that a PEX tube or system with a given extrapolated time-to-failure value will perform for that period of time under actual use conditions.

^{2.3} Plastics Pipe Institute (PPI) Document:

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

⁴ Available from Plastics Pipe Institute (PPI), 105 Decker Court, Suite 825, Irving, TX 75062, http://www.plasticpipe.org.

⁵ Available from American Water Works Association (AWWA), 6666 W. Quincy Ave., Denver, CO 80235, http://www.awwa.org.

6. Apparatus

6.1 *Pressurized Flow-Through Test System*—A system comprised of the necessary pump(s), fittings, piping, heaters, sensors, and meters that is capable of maintaining the required test pressures within the tolerance specified in 9.1.3, the required test temperatures within the tolerance of 9.1.2, and flow the test-fluid through the specimens continually at a flow rate within the tolerance specified in 9.1.4. Cyclic pressure variations, such as those produced by some pumping systems, shall not produce pressure excursions that exceed the tolerance stated in 9.1.3.

6.1.1 *Recirculating Test System*—A flow-through test system that repeatedly reconditions the test-fluid and passes it through the specimens. For purposes of this test method, the test-fluid shall be monitored at a sufficient frequency to ensure that it continuously meets the test-fluid parameters and water quality criteria. A portion of the total system volume shall be purged and replaced with fresh test-fluid continually.

6.1.2 *Single-Pass Test System*—A flow-through test system that passes the test-fluid through the specimens only once and is discarded.

6.2 *Specimen Holders*—Test specimens shall be supported to minimize or eliminate externally induced stresses. Specimens shall be allowed to freely expand bi-directionally.

7. Sampling, Test Specimens, and Test Units

7.1 *Sampling*—Select at random, a sufficient amount of tubing to satisfy the specimen requirements of this test method. When testing as a system, randomly select a sufficient quantity of fittings.

7.2 *Test Specimen Size*—The PEX tubing specimens shall be 12 to 18 in. (300 to 460 mm) in length between fitting closures or between fitting joints.

7.2.1 *Dimensions Measurement*—Measure and record the critical dimensions for tubing and fittings. For tubing, measure the average outside diameter and wall-thickness in accordance with Test Method D2122. For fittings, measure those dimensions critical to the function of the joint, as well as minimum body wall thickness.

7.3 *Testing as a System*—When testing PEX tubing and related system components (such as fittings) as a system, the other components shall be attached to the PEX tubing in the same manner as in actual service. For fittings, the particular fitting style shall be installed in accordance with the manufacturer's instructions or the ASTM specification when applicable.

7.4 *Minimum Required Test Units*—A minimum of six test units is required. A test unit is comprised of two or more individual time-to-failure data points at the same temperature and hoop stress condition. Statistical reliability of the analysis of the resultant data will be benefited by obtaining additional data points at each temperature/hoop stress condition.

7.4.1 *Test Unit Distribution*—Time-to-failure data points shall be obtained at 2 test hoop stresses at each of a minimum of 3 test temperatures for a minimum of 12 data points. As an alternate, obtain time-to-failure data for the temperature/hoop

stress combinations of the three-temperature matrix of PPI TN-16, see Note 3. Hoop stresses shall be separated by a least 80 psi (0.55 MPa).

NOTE 3—When using the PPI TN-16 matrix, Temperature T_3 , which requires testing at only one stress, refers to the lowest test temperature.

7.4.2 Test Temperature Selection—Temperatures of $239^{\circ}F$ (115°C), 221°F (105°C), and 203°F (95°C) have been utilized in prior testing of PEX, see Note 4. Adjacent test temperatures shall be separated by at least 18°F (10°C). Other test temperatures may be used, but the maximum test temperature shall not exceed 239°F (115°C).

Note 4—Prior testing indicates that for the test temperatures stated in 7.4.2, hoop stresses to yield Stage III failures within reasonable testing times are between 160 psi (1.10 MPa) and 400 psi (2.76 MPa). For a true SDR9 tube, those hoop stresses correspond to test pressures of 40 psig (275.9 kPa) to 100 psig (689.7 kPa). If a selected test hoop stress produces Stage I or Stage II failures, the stress will need to be reduced to produce Stage III failures at all temperatures.

7.4.2.1 *Relationship of Internal Pressure to Hoop Stress*— The hoop stress in the tubing wall is calculated by the following expression, commonly known as the ISO equation:

$$2S/P = DR - 1 \tag{1}$$

or

S

$$2S/P = \left(D_o/t\right) - 1 \tag{2}$$

where:

= stress in the circumferential or hoop direction, psi (MPa), (MP

P = internal pressure, psig (kPa), t = minimum wall thickness, in. (mm),

DR = dimension ratio, DR, and

 D_o = average outside diameter, in. (mm).

8. Calibration and Standardization

8.1 *Measuring Equipment*—All measuring and testing equipment having an effect on the accuracy or validity of the calibrations or tests shall be calibrated or verified, or both, before being put into service.

9. Test Fluid

9.1 *Internal Test Fluid*—The test fluid shall be reverse osmosis (RO) or deionized (DI) water prepared in accordance with 9.1.1.

9.1.1 *RO or DI Water Test-Fluid Preparation*—Test fluid prepared from RO or DI water shall have a pH in the range from 6.5 to 8.0 and contain 2.5 ppm to 5 ppm (milligrams per litre) of free-chlorine. The chosen pH shall be maintained to ± 0.2 and the chosen free-chlorine concentration shall be maintained to ± 0.2 ppm. The pH and free-chlorine concentration combination shall yield a minimum ORP of 825 mV for the test fluid, see Note 5. Testing shall be conducted with the same nominal pH and free-chlorine concentration for all test units.

Note 5—It is anticipated that use of RO or DI water may improve interlaboratory reproducibility; however, RO or DI water does not generally exist in real service. Since tap water (locally available potable water) quality can vary from location to location, and considering the international application of this test method, it seems prudent to utilize RO or DI water to minimize possible disparities of results obtained from laboratories in different geographical locations. Prior data obtained with test-fluid having an ORP of 750 mV or higher still provides a conservative extrapolation for potable-water conditions found in most areas of the United States.

9.1.2 Test Fluid Temperature Control—The test fluid entering each specimen shall be maintained to $\pm 1.8^{\circ}$ F ($\pm 1^{\circ}$ C) of the test temperature.

9.1.3 *Pressure Control*—The pressure of the test fluid shall be maintained to ± 3 psig (± 20.69 kPa).

9.1.4 *Test Fluid Flow Rate*—The flow rate of the test fluid shall yield a minimum velocity of 0.12 fps (0.04 mps). For the nominal size $\frac{1}{2}$ in., SDR9 tubing, this corresponds to a flow rate of 0.06 gpm (0.23 LPM). The formula used to calculate the flow rates for other sizes and DRs is as follows:

$$\frac{\pi (id/2)^{2*}FPS^{*}720}{231} = gpm \tag{3}$$

where:

id = measured inside diameter of the tubing, in.

9.2 Test Fluid Instrument Accuracy:

9.2.1 *pH*—The pH measurement and control instruments shall have an accuracy of 0.1 pH or better.

9.2.2 *Free-Chlorine*—Free-chlorine content measurement and control instruments shall have an accuracy of 0.1 ppm or better.

9.2.3 *ORP*—The ORP measurement and control instruments shall have an accuracy of ± 10 mV or better.

10. External Environment

10.1 The exterior environment shall be air and shall be maintained at the target temperature of the test fluid temperature $\pm 4.5^{\circ}$ F ($\pm 2.5^{\circ}$ C). Direct, forced-air heating of the specimens shall not be used.

11. Specimen Positioning/catalog/standards/sist/94004deb

11.1 The specimens can be positioned vertically or horizontally. Horizontal positioning requires special attention to insure that all entrapped air has been removed prior to starting the test. For vertically positioned specimens, the test fluid shall flow into the specimens from the lower end.

12. Procedure

12.1 Perform the test procedure in accordance with 12.2 - 12.4 for the test units specified in 7.4 with a test fluid as specified in Section 9.

12.2 After connecting the specimens to the flow-through apparatus, purge the specimens of all entrapped gas and start the flow of the test-fluid through the specimens at a temperature or pressure, or both, 40 to 50 % less than the test condition. Over the next 1 to 3 h, gradually increase the temperature and pressure of the test fluid to the test condition. When the test fluid reaches the test condition temperature, pressure, and flow rate, and the external environment has reached the test temperature in accordance with Section 10, register the start time.

12.3 Maintain the test condition until all of the specimens have failed. Any loss of fluid through the wall of the tubing or assembly constitutes a failure. Record the time-to-failure for each failed specimen within $\pm 1\%$ of the test time for the specimen. When multiple specimens are connected end-to-end, remove each failed specimen and continue the test until all remaining specimens at the conditions have failed.

12.4 Record the time in hours and a description for each failure. The description of each failure shall include: linear location from flow inlet, circumferential position, and initiation point (inside or outside of tube). For accurate test life extrapolation, all of the failures must be the same type. Mixed mode failures and failures initiated from the outside of the tube shall not be used for data analysis, see Note 6.

Note 6—Numerous failures occurring predominantly in approximately the same position on the tube circumference should be examined carefully. When there is an indication that the failures are attributable to the design or operation of the test, these values should be discarded unless it can be demonstrated that the testing provided a more conservative estimate of the oxidative resistance.

13. Calculation

13.1 Regression Analysis—Perform a multiple linear regression on the time-to-failure data in accordance with the rate process method PPI-TN-16 or Model Q of ISO 9080. The correlation coefficient (R^2 value) of the data shall be greater than 0.9 to ensure accuracy of the time-to-failure extrapolations. If it can be demonstrated that the four-coefficient regression equation in Model Q of ISO 9080 provides a better fit to the data set, then the coefficients, correlation (R^2 value), and extrapolated times-to-failure from that model shall be used and reported.

13.2 *Time-to-Failure Extrapolations* —Using the coefficients from 13.1, calculate the estimated time-to-failure at a hoop stress corresponding to a sustained internal pressure of 80 psig (551.7 kPa) for the DR of the tested specimens at temperatures of 180° F (82° C), 140° F (60° C), and 73° F (23° C).

Note 7—Calculations of the estimated time-to-failure may also be made at other temperatures up to the highest rated temperature.

Note 8—It may be convenient to also report the extrapolated time-tofailure in years by dividing hours by 8760.

13.3 Application of Miner's Rule—Calculate the estimated time to-failure for a hoop stress corresponding to a sustained internal pressure of 80 psig (551.7 kPa) for the DR of the tested specimens at temperature exposure conditions of 25 % of the total time at 140°F (60°C) and 75 % of the total time at 73°F (23°C) in accordance with ISO 13760. An example is shown in X1.2.

14. Report

14.1 *Report Content*—Report the minimum information as required in 14.2 - 14.9.

14.2 Laboratory name and location and starting and ending dates of the test.

14.3 Chlorine source (that is, chlorine gas, hypochlorite, and so forth)

14.4 Identification of the PEX tubing in the report shall include: tubing nominal size and DR or wall thickness specification; average outside diameter and minimum wall thickness