

Designation: D7854 - 13

StandardTest Method for Carbon Black-Void Volume at Mean Pressure¹

This standard is issued under the fixed designation D7854; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method covers a procedure to measure a carbon black structure property known as Void Volume at mean pressure. Compressed void volumes are obtained by measuring the compressed volume of a weighed sample in a cylindrical chamber as a function of pressure exerted by a movable piston. A profile of void volume as a function of pressure provides a means to assess carbon black structure at varying levels of density and aggregate reduction.
- 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:²
- D1799 Practice for Carbon Black—Sampling Packaged Shipments

 ASTM D7
- D1900 Practice for Carbon Black—Sampling Bulk Shipments
- D2414 Test Method for Carbon Black—Oil Absorption Number (OAN)
- D3493 Test Method for Carbon Black—Oil Absorption Number of Compressed Sample (COAN)
- D4821 Guide for Carbon Black—Validation of Test Method Precision and Bias
- D6086 Test Method for Carbon Black—Void Volume (VV)

3. Terminology

3.1 Refer to Sections 4 and 9 for a more complete understanding of the use of these terms in this test method.

- ¹ This test method is under the jurisdiction of ASTM Committee D24 on Carbon Black and is the direct responsibility of Subcommittee D24.11 on Carbon Black Structure.
- Current edition approved Nov. 1, 2013. Published December 2013. DOI: 10.1520/D7854-13.
- ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 applied pressure, n—the pressure exerted on a sample mass by a movable piston in a cylindrical chamber, where the load cell or force measuring system is in contact with the movable piston.
- 3.2.2 compressed volume (carbon black), n—the apparent volume that a specified mass of carbon black occupies when it is contained in a specified cylindrical chamber and subjected to a single uniaxial compression at a specified pressure by means of a movable piston.
- 3.2.3 *geometric mean pressure, n*—the geometric mean of the applied and transmitted pressures at a specific void volume; the geometric mean pressure is defined in Eq 1:

$$\int \int \int Geometric Mean P_{GM} = (P_a \times P_t)^{0.5} \tag{1}$$

- 3.2.4 theoretical volume (carbon black), n—the volume that a specific mass of carbon black would occupy if there were no void space within the carbon black, and is given by the ratio of mass to skeletal density, where the skeletal density is determined by an accepted test method.
- 3.2.5 transmitted pressure, n—the resulting pressure transmitted through a sample in a cylindrical chamber, where the load cell or force measuring system is in contact with the sample opposite the movable piston, typically via a stationary second piston.
- 3.2.6 *void volume (carbon black)*, *n*—a measure of the intra-aggregate void space or occluded volume within the primary structure of carbon black, characterized by the irregularity and non-sphericity of carbon black aggregate particles, and expressed as the difference (compressed volume minus theoretical volume) as a function of specified uniaxial compression pressure, and normalized to 100 g mass.
- 3.2.6.1 Discussion—Carbon blacks resist packing, compression, and fracture due to aggregate irregularities and entanglements, size distribution, and aggregate strength resulting from particle to-particle necks within aggregate branches. Compressed void volume is also affected by reacting forces to the cylinder wall and the piston tip, which in turn depend on factors including sample shape (that is, the ratio of sample height to cylinder diameter) or interfacial area, which can influence the uniformity of the compaction density. Since compressed void volumes as a function of applied pressure are known to be specific to sample mass and cylinder geometry,