

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 14343:2025

https://standards.iteh.ai/catalog/standards/iso/cb33ac31-c3c8-443e-813a-c9fe30f7b4bf/iso-14343-2025

COPYRIGHT PROTECTED DOCUMENT

© ISO 2025

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland

Contents

Forew	/ord	iv
Intro	luction	v
1	Scope	
2	Normative references	
3	Terms and definitions	
4	Classification 4.1 General 4.2 Symbols for products/processes 4.2.1 Classification by nominal composition – system A 4.2.2 Classification by alloy type – system B 4.3 Symbols for chemical composition	2 2 2 2 2
5	Properties of all-weld metal	
6	Chemical analysis	
7	Rounding procedure	
8	Retesting	
9	Technical delivery conditions	
10	Examples of designation	
Annex	x A (informative) Expected minimum tensile properties of all-weld metal	
	graphy(https://standards.iteh.ai)	

Document Preview

ISO 14343:2025

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 44, *Welding and allied processes*, Subcommittee SC 3, *Welding consumables*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 121, *Welding and allied processes*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

This fourth edition cancels and replaces the third edition (ISO 14343:2017), which has been technically revised. $\underline{|SO | 4343:2025}$

https://standards.iteh.ai/catalog/standards/iso/cb33ac31-c3c8-443e-813a-c9fe30f7b4bf/iso-14343-2025 The main changes are as follows:

- addition of 19 L Mo Nb Si Ti, 18 L Ti for the alloy type 439, 27 7 5 N L and 29 8 2 N L in <u>Table 1</u> and <u>Table A.1</u>;
- adjustment of chemical compositions in <u>Table 1</u>;
- change of <u>Table 1</u> footnote c on the symbol classifications in parentheses;
- Addition of G classification in <u>Table 1</u> for System B and new footnote;
- revision of Clause 10, Example 5.

Anv feedback auestions on this document should be directed the or to user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. Official interpretations of ISO/TC 44 documents, where they exist, are available from this page: https://committee.iso.org/sites/tc44/home/interpretation.html.

ISO 14343:2025(en)

Introduction

This document provides a classification system for wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels. It recognizes that there are two somewhat different approaches in the global market to classifying a given welding consumable, and allows for either or both to be used, to suit a particular market need. Many, but not all, commercial products addressed by this document can be classified using both approaches, and suitable products can also be marked.

System A uses the nominal composition approach with designators to indicate the principal alloying elements at their nominal levels, in a particular sequence, and which is sometimes followed by chemical element symbols to indicate compositional modifications to the original grade. System B uses the alloy type approach with three- or four-digit designations for certain grades, sometimes followed by one or more chemical element symbols indicating compositional modifications of the grade. In both approaches, classification is based upon the chemical composition of the product. In many cases, a given product can be classified using both approaches, because the composition ranges, although slightly different, overlap to a considerable extent between the two.

For stainless steel welding consumables, there is no unique relationship between the product form (wire electrode, strip electrode, wire or rod) and the welding process used (gas-shielded metal arc welding, gas tungsten arc welding, plasma arc welding, submerged arc welding, electroslag welding and laser beam welding). For this reason, the wire electrodes, strip electrodes, wires or rods can be classified on the basis of any of the above product forms and can be used, as appropriate, for more than one of the above processes.

Classification in accordance with system A, by nominal composition, was based mainly on EN 12072 which has been withdrawn and replaced by this document. Classification in accordance with system B, by alloy type, is mainly based upon standards used around the Pacific Rim.

(https://standards.iteh.ai) Document Preview

ISO 14343:2025

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 14343:2025

Welding consumables — Wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels — Classification

1 Scope

This document specifies requirements for classification of wire electrodes, strip electrodes, wires and rods for gas-shielded metal arc welding, gas tungsten arc welding, plasma arc welding, submerged arc welding, electroslag welding and laser beam welding of stainless and heat-resisting steels. The classification of the wire electrodes, strip electrodes, wires and rods is based upon their chemical composition.

This document is a combined specification providing for classification utilizing a system based upon nominal composition (system A), or utilizing a system based upon alloy type (system B).

- a) Paragraphs which carry the label "classification according to nominal composition" and the suffix "system A", or "ISO 14343-A", are applicable only to products classified according to system A;
- b) Paragraphs which carry the label "classification according to alloy type" and the suffix "system B", or "ISO 14343-B", are applicable only to products classified according to system B.
- c) Paragraphs which carry neither label nor suffix letter are applicable to products that can be classified according to either system A or B or both.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 544, Welding consumables — Technical delivery conditions for filler materials and fluxes — Type of product, dimensions, tolerances and markings

ISO 14344, Welding consumables — Procurement of filler materials and fluxes

ISO 80000-1:2022, Quantities and units — Part 1: General

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at https://www.iso.org/obp
- IEC Electropedia: available at <u>https://www.electropedia.org/</u>

3.1

rod

form of welding filler metal, normally packaged in straight lengths, that does not conduct the welding current, used in gas tungsten arc and plasma arc welding

3.2

strip electrode

form of welding filler metal, normally packaged as coils, having a rectangular cross-section of width much greater than thickness, that becomes part of the welding circuit through which current is conducted, and that terminates at the arc for submerged arc welding, or at the slag bath for electroslag welding

3.3

wire

form of welding filler metal, normally packaged as coils, spools or drums, that does not conduct the welding current, for gas tungsten arc, plasma arc welding and laser beam welding

3.4

wire electrode

form of welding filler metal, normally packaged as coils, spools or drums, that becomes part of the welding circuit through which electrical current is conducted, and that terminates at the arc, used in gas-shielded metal arc and submerged arc welding

4 Classification

4.1 General

A wire electrode, strip electrode, wire or rod shall be classified in accordance with its chemical composition as given in <u>Table 1</u>.

The classification is divided into two parts:

- a) the first gives a symbol indicating the product/process to be identified;
- b) the second gives a symbol indicating the chemical composition of the wire electrode, strip electrode, wire or rod.

4.2 Symbols for products/processes

4.2.1 Classification by nominal composition – system A

https://standards.iteh.ai/catalog/standards/iso/cb33ac31-c3c8-443e-813a-c9fe30f7b4bf/iso-14343-2025 The symbol for the wire electrode, strip electrode, wire or rod used in the arc welding process shall be the letter:

- G for gas metal arc welding;
- W for gas tungsten arc welding;
- P for plasma arc welding;
- S for submerged arc welding;
- B for submerged arc welding or electroslag welding with strip electrode; or
- L for laser beam welding, placed at the beginning of the designation.

See <u>Clause 10</u> for designation examples.

4.2.2 Classification by alloy type – system B

No symbol is used to indicate the welding process.

The symbol for solid stainless and heat-resisting steel wire electrodes, wires and rods for use in all welding processes shall be the letters "SS". The initial "S" indicates solid wire as distinguished from covered electrodes or from tubular cored wires or tubular cored rods. The second "S" indicates that the alloy system is stainless or heat-resisting steel.

ISO 14343:2025(en)

The symbol for strip electrodes for use in submerged arc welding or electroslag welding shall be the letters "BS". "B" indicates a strip electrode, and "S" indicates that the alloy system is stainless or heat-resisting steel.

See <u>Clause 10</u> for designation examples.

4.3 Symbols for chemical composition

The symbols presented in <u>Table 1</u> indicate the chemical composition of the wire electrode, strip electrode, wire or rod determined using the analysis specified in <u>Clause 6</u>.

iTeh Standards (https://standards.iteh.ai) Document Preview

ISO 14343:2025

					http		-	-					
Alloy designation	gnation		-	-	ps:	-	Chemical c	omposition	Chemical composition, % by mass ^a	-	-	-	
Nominal composition ISO 14343-A	Alloy type ISO 14343-B	С	Si	Mn	//s e anc	S	Cr	Ni	Мо	N	Cu	ч ИИ	Other
Martensitic/ferritic types	ic types				lar								
	409	0,08	0,8	0,8	ie iteh	0,03	10,5 to 13,5	0,6	0,50		0,75	I	Ti 10 × C to 1,5
	409Nb	0,08	1,0	0,8	0,04	0,03	10,5 to 13,5	0,6	0,50		0,75	10 × C to 0,75	
13	(410) ^c	0,15	1,0	1,0	0,03	0,02	12,0 to 15,0	0,5	0,5		0,5		
(13) c	410	0,12	0,5	0,6	0,03	0,03	11,5 to 13,5	0,6	0,75		0,75		I
13 L		0,05	1,0	1,0	0,03	0,02	12,0 to 15,0	0,5	0,5		0,5		
134	(410NiMo) ^c	0,05	1,0	1,0	0,03	0,02	11,0 to 14,0	3,0 to 5,0	0,4 to 1,0	I	0,5	I	I
(134) ^c	410NiMo	0,06	0,5	0,6	0,03	0,03	11,0 to 12,5	4,0 to 5,0	0,4 to 0,7	I	0,75	I	I
	420	0,25 to 0,40	0,5	9'0	0,03	0,03	12,0 to 14,0	0,6	0,75	I	0,75	I	I
1651		0,04	0,2 to 0,7	1,2 to 3,5	0,02	0,01	15,0 to 17,0	4,5 to 6,5	0,9 to 1,5		0,5	I	I
17	(430) c	0,12	1,0	1,0	0,03	0,02	16,0 to 19,0	0,5	0,5		0,5	1	I
(17) c	430	0,10	0,5	0,6	0,03	0,03	15,5 to 17,0	0,6	0,75	I	0,75	I	I
	430Nb	0,10	0,5	0,6	0,03	0,03	15,5 to 17,0	0,6	0,75	I	0,75	8 × C to 1,2	I
(18 L Nb) ^c	430LNb	0,03	0,5	0,6	0,03	0,03	15,5 to 17,0	0,6	0,75	I	0,75	8 × C to 1,2	
18 L Nb	(430LNb) c	0,03	0,5	0,8	0,03	0,02	17,8 to 18,8	0,5	0,5	0,02	0,5	0,05 + 7(C+N) to 0,6	
18 L Nb Si		0,03	0,5 to 1,5	1,0	0,03	0,03	17,5 to 19,5	0,5	0,5	0,02	0,5	0,05 + 7(C+N) to 0,6	
18 L Nb Ti		0,03	1,5	1,0	0,03	0,03	17,5 to 19,5	0,5	0,5	0,02	0,5	8 × C to 0,8	Ti 10 × C to 0,5
 a Single values shore b Up to 20 % of the 	Single values shown in the table are maximum values. Two values shown indicate minimum and maximum limits for a range. Up to 20 % of the amount of Nb can be replaced by Ta.	maximum values e replaced by Ta.	s. Two values st	10wn indicate 1	alum ar	nd maximun	a limits for a rang	e				-	
 Alloy designations in parentheses shall not be used as part of a classification. Alloy designations in parentheses [e.g. (308L) or (19 9 L)] indicate a near match in the other designation system, but not an exact match. The correct designation for a given composition range is the one not in parentheses. A given product, by having a more restricted chemical composition that fulfils both sets of designation requirements, may be assigned both designations independently. 	ns in parentheses sh r a given compositi. lently.	nall not be used on range is the	as part of a cla one not in par	ssification. All entheses. A giv	oy designat ven product	ions in pare , by having	intheses [e.g. (30 a more restricte	8L) or (19 9 L) ed chemical co] indicate a nea mposition that	r match in thε fulfils both sε	e other designa	tion system, but not a ion requirements, ma	n exact match. The y be assigned both
d Ni + Cu $\le 0, 5\%$.													
^e The all-weld metal is in most cases fully austenitic and therefore can brecognition of this, the manganese range is extended for a number of grades.	al is in most cases fue manganese range is	ully austenitic and sector and se	nd therefore ca number of grac	ın be susceptik les.	le to microl	fissuring or	hot cracking. Th	e occurrence o	f fissuring/crac	cking is reduce	d by increasin	The all-weld metal is in most cases fully austentitic and therefore can be susceptible to microfissuring or hot cracking. The occurrence of fissuring/cracking is reduced by increasing the weld metal manganese level, and in splition of this, the manganese range is extended for a number of grades.	ganese level, and in
f These compositio	These compositions are mainly used in low dilution overlay welding such as electroslag strip cladding.	in low dilution o	werlay welding	such as electr	oslag strip c	sladding.							
^g Consumables for which the chemic Z classification are not interchangeable.	which the chemical tinterchangeable.	composition is r	not listed shall	be symbolized	similarly a	nd prefixed	by the letter Z. Tl	he chemical coi	mposition rang	es are not spec	cified, and it is	Consumbles for which the chemical composition is not listed shall be symbolized similarly and prefixed by the letter Z. The chemical composition ranges are not specified, and it is possible that two products with the same sification are not interchangeable.	ucts with the same
h Consumables for which the chemical composition is not listed shall be symbolized by the letter G. The chemical composition ranges are not specified, and it is possible that two products with the same G classification are not interchangeable.	which the chemical	composition is r	ot listed shall	be symbolized	by the lette	r G. The che	mical compositio	n ranges are ni	ot specified, and	d it is possible	that two produ	icts with the same G cl	assification are not
)					5								

Table 1 — Chemical composition requirements

ISO 14343:2025(en)