FINAL DRAFT International Standard # **ISO/FDIS 11352** ISO/TC 147/SC 2 Secretariat: DIN Voting begins on: **2025-04-30** 2025-06-25 Voting terminates on: # Water quality — Estimation of measurement uncertainty based on validation and quality control data Qualité de l'eau — Estimation de l'incertitude de mesure basée sur des données de validation et de contrôle qualité ontrôle qualité typs://standards. **Document Previe**v https://standards.iteh.ai/catalog/standards/iso/1fe3ef1b-731c-4938-b952-85115c710aa3/iso-fdis-11352 RECIPIENTS OF THIS DRAFT ARE INVITED TO SUBMIT, WITH THEIR COMMENTS, NOTIFICATION OF ANY RELEVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION. IN ADDITION TO THEIR EVALUATION AS BEING ACCEPTABLE FOR INDUSTRIAL, TECHNOLOGICAL, COMMERCIAL AND USER PURPOSES, DRAFT INTERNATIONAL STANDARDS MAY ON OCCASION HAVE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN NATIONAL REGULATIONS. # iTeh Standards (https://standards.iteh.ai) Document Preview #### ISO/FDIS 11352 https://standards.iteh.ai/catalog/standards/iso/1fe3ef1b-731c-4938-b952-85115c710aa3/iso-fdis-11352 ## **COPYRIGHT PROTECTED DOCUMENT** © ISO 2025 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Con | tent | S | | Page | |---------|---|--|--|-------------------------------------| | Forew | ord | | | iv | | Intro | ductio | n | | v | | 1 | Scop | e | | 1 | | 2 | Normative references | | | | | 3 | Terms and definitions | | | | | 4 | Symbols | | | | | 5 | Principle | | | | | | Procedure | | | | | 6
7 | Prep 7.1 | Preparative considerations for the estimation of measurement uncertainty | | | | 8 | 8.1
8.2
8.3 | Appro
Withi
8.2.1
8.2.2
8.2.3
8.2.4
Bias
8.3.1
8.3.2
8.3.3
8.3.4 | of available data for within-laboratory reproducibility and bias bach and criteria n-laboratory reproducibility General Quality control samples covering the whole analytical process Using standard solutions and replicates of test samples No stable quality control samples General Analysis of suitable reference materials Participation in interlaboratory comparisons Recovery experiments | 7
8
9
10
10
11
12 | | 9 | | | of the combined standard uncertainty | | | 10 | Calculation of the expanded uncertainty | | | 15 | | 11 | Initia | al estim | ation of measurement uncertainty from reproducibility standard deviation | 16 | | 12http: | Repo | ndards.i
rt | teh.ai/catalog/standards/iso/1fe3ef1b-731c-4938-b952-85115c710aa3/iso-fdis-113: | 52
16 | | Annex | x A (in | formati | ve) Division of the measurement range into two parts — Constant absolute t relative uncertainties | | | Annex | B (no | rmative | e) Estimation of the pooled standard deviation from replicate measurements | 24 | | Annex | c C (in | formativ | ve) Examples of the estimation of measurement uncertainty | 25 | | Biblio | graph | ı y | | 38 | ## **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights. Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 147, *Water quality*, Subcommittee SC 2, *Physical, chemical and biochemical methods*. This second edition cancels and replaces the first edition (ISO 11352:2012), which has been technically revised. The main changes are as follows: - requirements for measurements for estimation of uncertainty component for the within-laboratory reproducibility have been changed from at least eight to 20 replicates with exception of a first estimation, - the use of data from target control charts estimation of precision is described - a new informative annex has been introduced to describe how to divide the measurement range into two parts for constant absolute and constant relative uncertainties, - In <u>Annex B</u> (former <u>Annex A</u>) the estimation of the standard uncertainty from range control charts has been changed to the use of pooled standard deviation, - the examples in <u>Annex C</u> have been adjusted, - this document has been editorially revised. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. ## Introduction The basic principles of the estimation of measurement uncertainty are set out in ISO/IEC Guide 98-3. There are several ways of estimating measurement uncertainty depending on the purpose of the estimation and the available data; Eurolab TR $1/2007^{[2]}$ gives an overview of the main approaches. This document specifies a set of procedures to enable laboratories to estimate the measurement uncertainty of their results, using an approach based on validation and quality control data. Validation data can be used for first estimates of the measurement uncertainty, but should later be confirmed with data from quality control, when the method is in routine use. It is structured in a way that is applicable to analysts that do not have a thorough understanding of metrology or statistics. Nordtest TR 537^[3] has been used as a basis for developing this document. The approach taken is "top-down", contrary to the mainly "bottom-up" strategy adopted in ISO/IEC Guide 98-3^[1]. It is statistically acceptable to combine the uncertainty components associate with within-laboratory reproducibility for random error and the uncertainty associated the bias for systematic error into a single measure of uncertainty. The sources of data for this approach are validation and analytical quality control. The experimental approach specified in this document enables a good coverage of the sources of variation observed during routine use of the analytical method. # iTeh Standards (https://standards.iteh.ai) Document Preview ISO/FDIS 11352 https://standards.iteh.ai/catalog/standards/iso/1fe3ef1h-731c-4938-b952-85115c710aa3/iso-fdis-11352 # iTeh Standards (https://standards.iteh.ai) Document Preview ISO/FDIS 11352 https://standards.iteh.ai/catalog/standards/iso/1fe3ef1h-731c-4938-b952-85115c710aa3/iso-fdis-11352