

Designation: A249/A249M - 14

Usedin USDOE-NE Standards

Standard Specification for Welded Austenitic Steel Boiler, Superheater, Heat-Exchanger, and Condenser Tubes¹

This standard is issued under the fixed designation A249/A249M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 This specification² covers nominal-wall-thickness welded tubes and heavily cold worked welded tubes made from the austenitic steels listed in Table 1, with various grades intended for such use as boiler, superheater, heat exchanger, or condenser tubes.
- 1.2 Grades TP304H, TP309H, TP309HCb, TP310H, TP310HCb, TP316H, TP321H, TP347H, and TP348H are modifications of Grades TP304, TP309S, TP309Cb, TP310S, TP310Cb, TP316, TP321, TP347, and TP348, and are intended for high-temperature service such as for superheaters and reheaters.
- 1.3 The tubing sizes and thicknesses usually furnished to this specification are ½ in. [3.2 mm] in inside diameter to 12 in. [304.8 mm] in outside diameter and 0.015 to 0.320 in. [0.4 to 8.1 mm], inclusive, in wall thickness. Tubing having other dimensions may be furnished, provided such tubes comply with all other requirements of this specification.
- 1.4 Mechanical property requirements do not apply to tubing smaller than ½ in. [3.2 mm] in inside diameter or 0.015 in. [0.4 mm] in thickness.
- 1.5 Optional supplementary requirements are provided and, when one or more of these are desired, each shall be so stated in the order.
- 1.6 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. The inch-pound units shall apply unless the "M" designation of this specification is specified in the order.

1.7 The following safety hazards caveat pertains only to the test method described in the Supplementary Requirements of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. A specific warning statement is given in Supplementary Requirement S7, Note S7.1.

2. Referenced Documents

2.1 ASTM Standards:³

A262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels

A480/A480M Specification for General Requirements for Flat-Rolled Stainless and Heat-Resisting Steel Plate, Sheet, and Strip

A1016/A1016M Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless

Steel Tubes

E112 Test Methods for Determining Average Grain Size

E213 Practice for Ultrasonic Testing of Metal Pipe and Tubing

E273 Practice for Ultrasonic Testing of the Weld Zone of Welded Pipe and Tubing

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

2.2 ASME Boiler and Pressure Vessel Code: Section VIII ⁴

2.3 Other Standard:

SAE J1086 Practice for Numbering Metals and Alloys (UNS)⁵

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.10 on Stainless and Alloy Steel Tubular Products.

Current edition approved March 1, 2014. Published March 2014. Originally approved in 1941. Last previous edition approved in 2010 as A249/A249M–10a. DOI: 10.1520/A0249_A0249M-14.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SA-249 in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Two Park Ave., New York, NY 10016-5990, http://www.asme.org.

⁵ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001, http://www.sae.org.

∀ 0
%
ω,
Ħ
ခ
e e
.≝
ᆵ
ĕ
Œ
a
<u>:</u>
Ε
e
$\dot{\circ}$
_
iii
=
m
⊠

	Other	1 1	Cb 0.10-0.30	: : :	: :	Ce	0.03-0.08	: :	O 6	80:0-80:0 		r Other	Cb 10x	2 6 5	O O	C-1.10 C-1.10 C-1.00	8							Ö					F F
	Copper	1.00	: :	: :	: :	: :	:	: :	: :	: :		Copper	:	:	: : :	: :	0.50–1.00	0.50-1.50	2	: :									
	Nitrogen ^C	0.25 0.10–0.25	0.20-0.40	0.20-0.40	: :	0.12-0.18	0.10-0.16	91.0-01.	0.14-0.20	: :		Nitrogen ^C	:	i	: : :	i i	0.10-0.16	0.30-0.40		: :	0.10	 0.10–0.16 0.10–0.16 	0.10-0.16	0.10–0.16 0.10–0.16 0.10–0.16 	0.10–0.16 0.10–0.16 0.10–0.16 0.10–0.16	0.10–0.16 0.10–0.16 0.10–0.16 Nitrogen ^C 0.20 0.10–0.20	0.10-0.16 0.10-0.16 0.10-0.16 Nitrogen ^C 0.20 0.10-0.20 0.15-0.21	0.10–0.16 0.10–0.16 0.10–0.16 0.10–0.20 0.10–0.20 0.10–0.20 0.10–0.20 0.11–0.22 0.17–0.22	0.10–0.16 0.10–0.16 0.10–0.16 0.20 0.10–0.20 0.15–0.21 0.21–0.32 0.17–0.22 0.17–0.22
	Molybdenum N		1.50–3.00 0.	0	: :			; 	· · · ·	: :		Molybdenum	:	i	: : :	i i	2.00–3.00 6.0–6.5	6.5-8.0	0000	2.00–3.00	2.00–3.00 2.00–3.00 2.00–3.00	2.00-3.00 2.00-3.00 2.00-3.00 2.00-3.00 3.0-4.0 3.0-4.0	2.00-3.00 2.00-3.00 2.00-3.00 2.00-3.00 3.0-4.0 3.0-4.0	2.00-3.00 2.00-3.00 2.00-3.00 2.00-3.00 2.00-3.00 3.0-4.0 3.0-4.0	2.00–3.00 2.00–3.00 2.00–3.00 3.0–4.0 3.0–4.0 4.0–5.0	2.00–3.00 2.00–3.00 2.00–3.00 2.00–3.00 3.0–4.0 3.0–4.0 4.0–5.0 4.0–5.0 3.8–4.5	2.00–3.00 2.00–3.00 2.00–3.00 2.00–3.00 3.0–4.0 3.0–4.0 4.0–5.0 4.0–5.0 3.8–4.5 6.0–6.8	2.00–3.00 2.00–3.00 2.00–3.00 2.00–3.00 3.0–4.0 3.0–4.0 4.0–5.0 3.8–4.5 6.0–6.8 5.0–6.8	2.00–3.00 2.00–3.00 2.00–3.00 2.00–3.00 3.0–4.0 3.0–4.0 4.0–5.0 4.0–5.0 3.8–4.5 6.0–6.8 5.0–6.0
	Nickel Moly	3.5–5.5 4.0–5.0		2.3–3.7 8.0–11.0	8.0–12.0 8.0–11.0	9.0–10.	8.0–11.0	8.0-11.0	13.5–16.0 10.0–12.0	12.0–15.0 12.0–15.0		Nickel	12.0–16.0	12.0–16.0	19.0–22.0 19.0–22.0 18.0–22.0	19.0–22.0	21.0–23.0	26.0–28.0		10.0–14.0	10.0–14.0	10.0–14.0 10.0–14.0 10.0–13.0 11.0–15.0	10.0–14.0 10.0–14.0 10.0–13.0 11.0–13.0 11.0–15.0	10.0–14.0 10.0–14.0 10.0–13.0 10.0–13.0 11.0–15.0 Nickel	10.0–14.0 10.0–14.0 10.0–13.0 10.0–13.0 11.0–15.0 11.0–15.0 13.5–17.5	10.0–14.0 10.0–13.0 10.0–13.0 11.0–15.0 11.0–15.0 Nickel Nickel 13.5–17.5 14.5–17.5	10.0–14.0 10.0–14.0 10.0–13.0 11.0–15.0 11.0–15.0 11.0–15.0 Nickel Nickel 13.5–17.5 14.5–17.5 14.5–16.5	10.0–14.0 10.0–13.0 10.0–13.0 11.0–15.0 11.0–15.0 11.0–15.0 11.0–15.0 11.0–15.0 11.0–15.0 11.0–15.0 14.5–17.5 14.5–16.5 24.0–26.0 9.0–12.0	10.0–14.0 10.0–13.0 10.0–13.0 11.0–15.0 11.0–15.0 11.0–15.0 11.0–15.0 11.0–15.0 11.0–15.0 11.0–15.0 14.5–17.5 14.5–17.5 14.5–16.5 24.0–23.0 24.0–23.0 9.0–12.0
		16.0–18.0 3.6 16.0–17.5 4.0			18.0–20.0 8.0 18.0–20.0 8.0		18.0–20.0		17.0–19.5 13.5 20.0–22.0 10.0	22.0–24.0 12.0 22.0–24.0 12.0	Composition, %	Chromium	22.0–24.0	22.0–24.0	24.0–26.0 24.0–26.0 24.0–26.0	24.0–26.0	24.0–26.0	20.5–23.0)	16.0–18.0	16.0–18.0 16.0–18.0 16.0–18.0	16.0–18.0 16.0–18.0 16.0–18.0 16.0–18.0 18.0–20.0	16.0–18.0 16.0–18.0 16.0–18.0 16.0–18.0 18.0–20.0 18.0–20.0 Composition, %	16.0–18.0 16.0–18.0 16.0–18.0 18.0–20.0 18.0–20.0 18.0–20.0 Chromium	16.0–18.0 16.0–18.0 16.0–18.0 18.0–20.0 18.0–20.0 Chromium	16.0–18.0 16.0–18.0 16.0–18.0 16.0–18.0 18.0–20.0 18.0–20.0 Chromium 18.0–20.0 17.0–20.0	16.0–18.0 16.0–18.0 16.0–18.0 16.0–18.0 18.0–20.0 18.0–20.0 17.0–20.0 17.0–20.0 17.5–19.0 22.0–24.0	16.0–18.0 16.0–18.0 16.0–18.0 16.0–20.0 18.0–20.0 18.0–20.0 17.0–20.0 17.5–19.0 22.0–24.0 17.0–19.0	16.0–18.0 16.0–18.0 16.0–18.0 16.0–20.0 18.0–20.0 18.0–20.0 17.0–20.0 17.5–19.0 22.0–24.0 17.0–19.0
							ht	1		• //	Com	Silicon	1.00	a.r.	1.00	1.00 1.00 1.00	0.40	0.50)	0.5	0.00.00.00	8.	1.00 1.00 1.00 1.00 Com	-	Silicon Comp	Sillicon Comp	Silicon Comp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Silicon 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Silicon 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
	Silicon	1.00	1.00	1.00	1:00	1.00-2.00	1.00	0.1	3.2-4.0	1.00	n	Sulfur	0.030	0.030	0.030	0.030	0.015	0.010	0 (0	0.030	0.030	0.030 0.030 0.030 0.030 0.030	0.030 0.030 0.030 0.030	0.030 0.030 0.030 0.030 0.030 0.030	0.030 0.030 0.030 0.030 0.030 Sulfur	0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030	0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030	0.030 0.030 0.030 0.030 0.030 0.030 0.020 0.020 0.030	0.030 0.030 0.030 0.030 0.030 0.030 0.020 0.020 0.030 0.030
	Star	0.030 0.015	000.00.00.00.00.00.00.00.00.00.00.00.00	0:030 h.ai/	00:00:00:00:00:00:00:00:00:00:00:00:00:	00000 alog	0:030 sta	0:030 anda	00000 00000 00000	0.030	T] a6	Phosphorous	0.045	9/A 852	0.045 0.045 0.045 0.045	0.045 0.045 0.045	050-0 0030 0000	0.030	b sk	71 2 5	0.045 0.045 0.045 0.045 0.045	0.045 0.045	7bf28e5e/sst	0.045 0.045	20.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045	20.045	20.045	70.036	7 5 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	Phosphorous	0.060	0.045	0.060	0.045	0.045	0.045	0.045	0.030	0.045			0.0	0.0	0.0	0.0	0.0	0.0	0.045	_	0.0	0.0000							
	Manganese	5.50–7.5 6.4–7.5	4.0-6.0	11.5–14.5	2.00	0.80	2.00	2.00	0.80	2.00		Manganese	2.00	2.00	6 6 6 6	2.00	2.00	3.00	2:00	2	% % % % % % %	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 60	2.00 2.00 2.00 2.00 2.00 2.00 Manganese	2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.50 2.00	2.00 2.00 2.00 2.00 2.00 2.00 1.00 1.00
	Carbon N	0.15	0.06		0.030	0.04-0.06	0.08	0.12	0.16-0.24 0.05-0.10	0.08		Carbon	0.08	0.04-0.10	0.08 0.04-0.10 0.08	0.04-0.10	0.030	0.020	0.030		0.08	0.030 0.030 0.030 0.030	0.030	0.08 0.030 0.08 0.030 Carbon	0.030 0.030 0.030 0.030 0.030	0.08 0.030 0.030 0.030 0.030 0.030 0.030	0.08 0.030 0.08 0.030 0.030 0.030 0.030	0.08 0.08 0.030 0.030 0.030 0.030 0.030 0.030	0.08 0.08 0.08 0.030 0.030 0.030 0.030 0.030 0.030 0.030
_	UNS C	00 53	10									UNS Designation ^B	S30940	S30941	S31008 S31009 S31040	S31041	S31050 S31254	S31277 S31600	S31603	2000	S31651	S31651 S31653 S31700 S31703	331703	231651 231653 231700 231703 UNS Designation ⁸	231651 231651 231700 231703 UNS Designation ^B 231725 231725	\$31651 \$31653 \$31700 \$31703 Designation ⁶ \$31725 \$31725 \$31725	231651 331653 331700 331725 331725 S31726 S31727 S32050	231651 231651 231700 231703 Designation ^B 231725 S31726 S31726 S31726 S31726 S31726 S32050 S32050 S32050 S32100	231651 231651 231700 231703 Designation ^B 231725 231726 S31726 S31726 S32050 S32050 S32053 S32109
	Grade	TP 201 S20100 TP 201LN S20153 TP 202	6		TP304L ^D S30403 TP304H S30409		TP304N S30451		S30615 S30815	TP309S S30908 TP309H S30909		Grade	TP309Cb	TP309HCb S	TP310S S TP310H S TP310Cb S	φ.	: :	 TP316	۵			a _P	Q.Z	ade ade	ade ade	age.	ade.	age age	ade ade

					TABLE 1	Continued						
: :	S32654 S33228	0.020	2.0–4.0	anda 0000 0000 0000	0.005	0.50	24.0–25.0 26.0–28.0	21.0–23.0 31.0–333.0	7.0–8.0	0.45-0.55	0.30-0.60	: 응
				rds.ite								0.60–1.00 Ce 0.05–0.10
 TP347	S34565 S34700	0.030	5.0–7.0	0.030 0.045 0.045	0.010	1.00	23.0–25.0 17.0–19.0	16.0–18.0 9.0–12.0	4.0–5.0	0.40-0.60	: :	AI0.025 Cb 0.10 Cb 10xC-
TP347H	S34709	0.04-0.10	2.00	0.045	0.030	1.00	17.0–19.0	9.0–12.0	:	:	:	0.10 Cb 8xC-
TP348	S34800	0.08	2.00	0.045 de la constant	0.030	1.00	17.0–19.0	9.0–12.0	:	:	:	(Cb+Ta)
ТР348Н	S34809	0.04-0.10	2.00	andards/s	0.030	i'l ttps:	17.0–19.0	9.0–12.0	÷	÷	ij	Ta 0.10 Co 0.20 (Cb+Ta) 8xC-1.10
÷	S35045	0.06-0.10	1.50	0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045	CU ₂ 0.0	leh /sta	25.0–29.0	32.0–37.0	ŧ	ij	0.75	1a 0.10 Co 0.20 Al 0.15–0.60
TPXM-15 	S38100 S38815	0.08	2.00	0.030 0.040 0.040	0000 0000 A249/	1.50–2.50	17.0–19.0 13.0–15.0	17.5–18.5 15.0–17.0	0.75–1.50	1 1	0.75–1.50	0.15–0.60 AI 0.30
	N08367 N08800	0.030	2.00	0.040 0.045 0.045	0.030 0.030 0.030	00.1 00.1 00.1 00.1	20.0–22.0 19.0–23.0	23.5–25.5 30.0–35.0	6.0–7.0	0.18–0.25	0.75	 Al 0.15_0.60
Н008	N08810	0.05-0.10	1.50	0.045 pd0-a650-060	review M-14	ards ds.iteh	19.0–23.0	30.0–35.0	÷	ï	0.75	0.15–0.60 Fe ^E 39.5 min All 0.15–0.60
;	N08811	0.05-0.10	1.50	0.045 0.045 0.045 0.045 0.045 0.045	0.015	.20	19.0–23.0	30.0–35.0	÷	ï	0.75	Fe ^E 39.5 min Al 0.25-0.60 ^F Ti
: :	N08926 N08904	0.020	2.00	e/astm-1	0.010	0.50	19.0–21.0 19.0–23.0	24.0–26.0 23.0–28.0	6.0–7.0 4.0–5.0	0.15-0.25	0.50-1.50	Fe ^F 39.5
A Maximum, unless otherwise indicated. B New designation established in accordance with Practice E527 and SAE J1086. The method of analysis for nitrogen shall be a matter of agreement between the purchaser and manufacturer. Per small diameter or thin walls or both where manuforwing nasses are required a carbon maximum of 0 0.00.	otherwise indicated stablished in accoralysis for nitrogen stablished in accoralysis for him walls, or by	rdance with Pract shall be a matter of the where many of	ice E527 and S/ of agreement be	AE J1086. tween the purchase required as	A Maximum, unless otherwise indicated. B New designation established in accordance with Practice E527 and SAE J1086. C The method of analysis for nitrogen shall be a matter of agreement between the purchaser and manufacturer. D For small diameter or thin walls or both where many drawing passes are required a carbon maximum of 0.040 % is necessary in Grades TP 3041 and TP 3161. Small outside diameter tubes are defined as those	turer. of 0.040 % is nec	Pescary in Grade	TP 3041 and	TP 316l Small	ultside diamete	ar tubes are defi	as those

Programment of the many of the many of agreement and programment of the many of the many of agreement the same defined as those less than 0.049 in. [1.2 mm] in minimum wall thickness.

F(AI + TI) = 0.85 to 1.20.

3. Ordering Information

- 3.1 It is the responsibility of the purchaser to specify all requirements that are necessary for material ordered under this specification. Such requirements may include, but are not limited to, the following:
 - 3.1.1 Quantity (feet, metres, or number of lengths),
- 3.1.2 Name of material welded tubes (WLD) or heavily cold worked tubes (HCW),
 - 3.1.3 Grade (Table 1),
 - 3.1.4 Size (outside diameter and nominal wall thickness),
 - 3.1.5 Length (specific or random),
 - 3.1.6 Optional requirements (13.6),
- 3.1.7 Test report required (see Certification Section of Specification A1016/A1016M),
 - 3.1.8 Specification designation, and
- 3.1.9 Special requirements and any supplementary requirements selected.

4. General Requirements

4.1 Material furnished under this specification shall conform to the applicable requirements of the current edition of Specification A1016/A1016M, unless otherwise provided herein.

5. Manufacture

- 5.1 The welded (WLD) tubes shall be made from flat-rolled steel by an automatic welding process with no addition of filler metal.
- 5.1.1 Subsequent to welding and prior to final heat treatment, the tubes shall be cold worked either in both weld and base metal or in weld metal only. The method of cold working may be specified by the purchaser. When cold drawn, the purchaser may specify the minimum amount of reduction in cross-sectional area or wall thickness, or both.
- 5.1.2 Heavily cold worked (HCW) tubes shall be made by applying cold working of not less than 35 % reduction in both wall and weld to a welded tube prior to the final anneal. No filler metal shall be used in the making of the weld. Prior to cold working, the weld shall be 100 % radiographically inspected in accordance with the requirements of ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, latest revision, Paragraph UW 51.

6. Heat Treatment

- 6.1 All material shall be furnished in the heat-treated condition in accordance with the requirements of Table 2.
- 6.2 A solution annealing temperature above 1950 °F [1065 °C] may impair the resistance to intergranular corrosion after subsequent exposure to sensitizing conditions in TP309HCb, TP310HCb, TP321, TP321H, TP347, TP347H, TP348, and TP348H. When specified by the purchaser, a lower temperature stabilization or re-solution anneal shall be used subsequent to the initial high temperature solution anneal (see Supplementary Requirement S4).

7. Chemical Composition

7.1 The heat analysis shall conform to the requirements as to chemical composition given in Table 1.

8. Product Analysis

- 8.1 An analysis of either one length of flat-rolled stock or one tube shall be made for each heat. The chemical composition thus determined shall conform to the requirements given in Section 7.
- 8.2 A product analysis tolerance of Table A1.1 in Specification A480/A480M shall apply. The product analysis tolerance is not applicable to the carbon content for material with a specified maximum carbon of 0.04 % or less.
- 8.3 If the original test for product analysis fails, retests of two additional lengths of flat-rolled stock or tubes shall be made. Both retests for the elements in question shall meet the requirements of the specification; otherwise all remaining material in the heat or lot (See Note 1) shall be rejected or, at the option of the producer, each length of flat-rolled stock or tube may be individually tested for acceptance. Lengths of flat-rolled stock or tubes that do not meet the requirements of the specification shall be rejected.

Note 1—For flattening and flange requirements, the term lot applies to all tubes prior to cutting of the same nominal size and wall thickness which are produced from the same heat of steel. When final heat treatment is in a batch-type furnace, a lot shall include only those tubes of the same size and from the same heat which are heat treated in the same furnace charge. When the final heat treatment is in a continuous furnace, the number of tubes of the same size and from the same heat in a lot shall be determined from the size of the tubes as prescribed in Table 3.

Note 2—For tension and hardness test requirements, the term lot applies to all tubes prior to cutting, of the same nominal diameter and wall thickness which are produced from the same heat of steel. When final heat treatment is in a batch-type furnace, a lot shall include only those tubes of the same size and the same heat which are heat treated in the same furnace charge. When the final heat treatment is in a continuous furnace, a lot shall include all tubes of the same size and heat, annealed in the same furnace at the same temperature, time at heat, and furnace speed.

9. Tensile Requirements

9.1 The material shall conform to the tensile properties prescribed in Table 4.

10. Hardness Requirements

10.1 The tubes shall have a Rockwell hardness number not exceeding the values specified in Table 4.

11. Reverse-Bend Test Requirement

11.1 A section 4 in. [100 mm] minimum in length shall be split longitudinally 90° on each side of the weld. The sample shall then be opened and bent around a mandrel with a maximum thickness of four times the wall thickness, with the mandrel parallel to the weld and against the original outside surface of the tube. The weld shall be at the point of maximum bend. There shall be no evidence of cracks, or of overlaps resulting from the reduction in thickness of the weld areas by cold working. When the geometry or size of the tubing make it difficult to test the sample as a single piece, the sample may be sectioned into smaller pieces provided a minimum of 4 in. of weld is subjected to reverse bending.

Note 3—The reverse bend test is not applicable when the specified wall is $10\,\%$ or more of the specified outside diameter, or the wall thickness is $0.134\,$ in. [3.4 mm] or greater, or the outside diameter size is less than $0.375\,$ in. [9.5 mm]. Under these conditions the reverse flattening test of