INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ORGANISATION INTERNATIONALE DE NORMALISATION MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ

Tolerances for building -

Part 3:

Procedures for selecting target size and predicting fit

Tolérances pour le bâtiment —

Partie 3: Procédés pour choisir la dimension r<u>echerchée et prévoir l'ajustement</u> https://standards.iteh.ai/catalog/standards/sist/3747af96-d098-4790-ba4bffdd4e7ec09b/iso-3443-3-1987

(standards.iteh.ai)

ISO 3443-3 First edition

1987-02-15

Reference number ISO 3443-3:1987 (E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting, ANDARD PRE 11 en S

International Standard ISO 3443-3 was prepared by Technical Committee ISO/TC 59, Building construction.

Users should note that all International Standards undergo revision from time to time and that any reference made herein to sany lother distinguished by the standard implies fits-d098-4790-ba4blatest edition, unless otherwise stated. ffdd4e7ec09b/iso-3443-3-1987

W

Ô International Organization for Standardization, 1987

Printed in Switzerland

C	Contents	Dawa	
0	Introduction	Page 1	
1	Scope	1	
2	Field of application	2	
3	References	2	
4	Definitions	2	
iTab S		3	
	Basis of procedures	. 3	
(9	standards.iteh.ai)	. 4	
https://standards.itel	Annexes <mark>SO 3443-3:1987</mark> h.a/catalog/standards/sist/3747a/96-d098-4790-ba4b-		
4	A ffdrherent/deviations3-3-1987	. 8	
E	B Worked examples	. 9	

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

ISO 3443-3:1987 https://standards.iteh.ai/catalog/standards/sist/3747af96-d098-4790-ba4bffdd4e7ec09b/iso-3443-3-1987

Tolerances for building –

Part 3: Procedures for selecting target size and predicting fit

0 Introduction

This part of ISO 3443 forms one of a series concerning tolerances for building and building components.

It should be read in conjunction with parts 1 and 2 of ISO 3443, ISO 1803-1 and ISO 1803-2.

Parts 3 and 4 of ISO 3443 have been produced to meet the needs for internationally agreed methods of relating accuracy, tolerances and fit in the determination of sizes for components and construction (and, in part 4, joints). Two distinct needs are identified, though both share common ground. Δ

There is thus a need to provide generally applicable expressions relating accuracy, tolerances and fit, that can be drawn upon either

a) to identify optimum target sizes for standard components where each type of component has a variety of applications, or

b) to identify appropriate limits of size for components, whether standard or not, for application in a specific building.

Both needs can be met by expression of substantially the same relationships between the factors affecting fit, and in principle either part might be pressed into service to meet either aim. In practice, however, each is structured to serve its particular purpose.

Joints in more than one dimension are however only considered in part 4 of ISO 3443.

This part of ISO 3443 is structured primarily to meet the aims in a) above. It provides procedures for selecting target sizes (formerly "work sizes") for components or *in situ* parts, such that joint clearances will be within their required limits with a known probability of success.¹) The procedures deal with the relationship between the following factors:

- 1) accuracy of components and in situ work;
- sizes of components and *in situ* work;

- 3) joint clearances;
- 4) probability of fit;

and they can be used whether 2), 3) or 4) above is the unknown to be calculated. The procedures assume that values for 1) above have been established by measurement surveys and relate target sizes to coordinating sizes using the concepts of "extension" and "deduction". See 4.4 and 4.5.

The procedures also enable a target size to be calculated for any standard component, such that the component will have an optimal probability of fit in all its applications.

Worked examples are given in annex B.

Part 4 of ISO 3343 is structured primarily to meet the needs in b) above. It is therefore concerned primarily with the design of buildings in which components (including standard components) are used, and is aimed primarily at building designers who, as engineers, can be expected to be mathematically and statistically competent. It is to meet these aims that part 4 of ISO 3443 deals with

 methods for predicting deviations and specifying tolerances to obtain a particular desired total accuracy in an assembly;

- the effect of specified tolerances on expected size variability;

- the basis for optimization of tolerances for each particular assembly and its elements.

Part 4 of ISO 3443 presupposes calculations only for assemblies with elements of one dimension, such as beams and columns, for the sake of simplicity. However, tables for common cases with elements of two and three dimensions (panels, etc.) are given in the annex to part 4.

1 Scope

This part of ISO 3443 provides a basis for relating joint clearances and target sizes and for the prediction of fit within the context of dimensional coordination, including modular coordination.

¹⁾ This part deals with accuracy in terms of target size and limits of size (e.g. upper and lower limits of component size). Alternatively, accuracy can be defined in terms of permitted deviations in relation to a reference size – usually identical with the target size. See ISO 1803-1.

2 Field of application

This part of ISO 3443 is for use by component manufacturers when determining target sizes for standard components; it is also for use by building designers when determining target sizes for construction on site, assessing the applicability of standard components or determining target sizes for nonstandard components. The applicability of the procedures is further described in 6.1 and 6.2.

References 3

ISO 1791, Modular co-ordination - Vocabulary.

ISO 1803-1, Tolerances for building - Vocabulary - Part 1: General terms.

ISO 1803-2, Tolerances for building — Vocabulary — Part 2: Derived terms.

ISO 3443-1, Tolerances for building - Part 1: Basic principles for evaluation and specification.

ISO 3443-2, Tolerances for building - Part 2: Statistical basis for predicting fit between components having a normal distribution of sizes.

ISO 3443-4, Tolerances for building - Part 4. Methods for predicting deviations of assemblies and the allocation of 4.5 deduction: Amount by which the target size of a comtolerances. standai

Definitions 4

For the purposes of this part of ISO 3443, the definitions given in ISO 1791 and ISO 1803, and as follows, are applicable.

4.1 systematic deviation: Mean deviation of the type of space or component¹⁾ considered (to be found by measurement of a representative sample of constructed spaces, or of components¹⁾, of the type considered).

See ISO 3443-2.

4.2 standard deviation : Positive square root of the mean of the squares of the deviations.

4.3 space target size: Intended size of an opening formed between two erected components¹).

NOTE - The size is equal to the sum of the coordinating size of the space and its extension.

4.4 extension: Amount by which the target size of a space exceeds its coordinating size (see figure 1).

ponent h is less than its coordinating size (see figure 1).

ISO 3443-3:1987 https://standards.iteh.ai/catalog/standards/sist/3747af96-d098-4790-ba4bffdd4e7ec09b/iso-3443-3-1987

Extension = a + a = Deduction for components "A"

The deduction, for the components "A" forming the space, provides the extension in the space and so produces a target size, for that space, that components "B" are to occupy.

Figure 1 - Illustration of extension and deduction

In certain cases, in situ work may be considered as if it were a component. 1)

Symbols 5

$C_{\sf sp}$	Space coordinating size	tion so that joints that are within their required cle can be achieved. The procedures also enable select ing techniques that have suitable clearance limits w all of the target sizes are predetermined (as wh components are used).		
D	Deduction			
E	Extension			
E _{max}	Maximum extension			
E _{min}	Minimum extension	In either application the procedures enable predi- probability that joints on site will be within the		
J	Joint clearance (required by a chosen jointing tech- nique)	misfitting either the minimum or maximum joint which the chosen jointing technique is capable.		
I _{max}	Maximum joint clearance (required by a chosen joint- ing technique)	6.1 Assumptions		
J _{min}	Minimum joint clearance (required by a chosen joint- ing technique)	6.1.1 Deviations		
i	Predicted joint clearance	Dimensional variability data are for the general form of construction or component; that is, it is tolerances have not yet been applied and that both components and <i>in situ</i> work therefore f distributions about a mean the value of which is systematic deviation. The values of mean a		
i _{max}	Maximum predicted joint clearance			
i _{min}	Minimum predicted joint clearance			
и	Systematic deviation			
u _{comp}	Systematic deviation of component ¹⁾	deviation which are required as a description of variability may be estimated from measurement su natively, standard deviation may be estimated fro		
$u_{\rm sp}$	Systematic deviation of space STANDARI			
n	The number of components occupying a constructed S. space	specifications combined with acceptance criteria, assumed that systematic deviation is zero.		
Q	Multiplier of the standard deviation corresponding to a3-3:10 selected probability of joint clearances being too large rds/si	267.1.2 Criteria for fit st/3747af96-d098-4790-ba4b-		
q	Multiplier of the standard deviation corresponding to a -344 selected probability of joint clearances being too small	Two factors , acting in conjunction, determine wh fit will be achieved. These factors are as follows:		
r	The mean of correlation coefficients between the sizes	a) the specified upper and lower limits of joir		
	of all possible pairs of components	b) the capability of the selected jointing techn tion actisfactorily within these limits.		
$\sigma_{ m comp}$	The standard deviation of the total ²⁾ dimensional variability, induced in manufacture of a component, along the axis considered	In order to predict fit, this part of ISO 3443 rec sizes are to be derived from coordinating or mo calculations make use of extension and deduc of maintaining the relationship.		
$\sigma_{ m sp}$	The standard deviation of the total ²⁾ dimensional variability that is characteristic of the type of space, along the axis considered			
	-			

- Wcomp Target size of component¹⁾
- W_{max} Component size - upper target size limit¹⁾
- Component size lower target size limit¹⁾ Wmin

Basis of procedures 6

Induced and inherent deviations³⁾ (see ISO 3443-1) potentially prevent the achievement, on site, of joint clearances that are within the working limits of a jointing technique.

The procedures recommended in this part of ISO 3443 enable selection of suitable target sizes for components and construcso that joints that are within their required clearance limits be achieved. The procedures also enable selection of jointtechniques that have suitable clearance limits when some or of the target sizes are predetermined (as when standard ponents are used).

either application the procedures enable prediction of the pability that joints on site will be within their clearance ts. The procedures are designed to predict the chance of fitting either the minimum or maximum joint clearance of ch the chosen jointing technique is capable.

Assumptions

Deviations 1

nensional variability data are for the general case of each n of construction or component; that is, it is assumed that rances have not yet been applied and that deviations for h components and in situ work therefore follow normal ibutions about a mean the value of which is influenced by ematic deviation. The values of mean and standard iation which are required as a description of dimensional ability may be estimated from measurement surveys; altervely, standard deviation may be estimated from tolerance cifications combined with acceptance criteria, it being then

2 Criteria for fit 7af96-d098-4790-ba4bfactors, acting in conjunction, determine whether or not

- a) the specified upper and lower limits of joint clearance;
- the capability of the selected jointing technique to funco) tion satisfactorily within those limits.

rder to predict fit, this part of ISO 3443 requires that target s are to be derived from coordinating or modular sizes. The ulations make use of extension and deduction as a means naintaining the relationship.

6.1.3 Assembly

It is assumed that those components that are erected first form spaces within which the remainder must fit with satisfactory joint clearances. It is recognized that not all building construction follows this sequence in practice but the assumption nonetheless provides a valid basis for calculation purposes.

When measurement surveys provide the accuracy data for the sizes of such constructed spaces, these data will automatically include the contributions of setting out and erection to the total variability of constructed spaces.

¹⁾ In certain cases, in situ work may be considered as if it were a component.

²⁾ i.e., embracing all constituent variables such as bow, twist, etc.

³⁾ Inherent deviations are dealt with in annex A.

It is also assumed that components which are to occupy constructed spaces can be adjusted in position to achieve joint clearances within their working limits. Alternatively, where physical adjustment of components would not be practical they, and the constructed space they are to occupy, can be measured prior to their insertion in the space concerned in order to derive an approximate uniform joint clearance to be aimed for in that assembly. It will then be clear prior to assembly whether or not the joint clearance that will be achieved will lie within the required limits of joint clearance.

As an alternative to the assumption that components can be adjusted (or measured to achieve the same end), a modification to deal with placing components in relation to a datum or grid is given in 7.6.

If two or more components in an assembly are butt-jointed, the group may be treated as if it were one component with a $\sigma_{
m comp}$ value equal to the square root of the sum of the squares of $\sigma_{\rm comp}$ for each component.

6.1.4 Common basis of application

Provided the assumptions (in 6.1) apply, the procedures provide a common basis for I I en SIAI

7.1.1 Risk of misfit selecting target sizes for standard components so that 21 they can have the widest application, and for

selecting, from standard components, those that are 0.34 clearance being too large and too small respectively. suitable for a specific application suitable for a specific applic

Thus the procedures enable target sizes to be derived from coordinating sizes or modular sizes so as to enable dimensional or modular coordination to be implemented at their practical level.

The procedures can also be applied when designing a specific building using non-standard components but where generalized accuracy data (for example, for "precast concrete units", or for "timber windows") are available. In this case its basis matches the common design circumstance in which particular sources of components or construction are not yet identified.

6.2 Application limitations

The objective is to provide manufacturers, building designers and builders with working procedures for predicting the probability that satisfactory fit can be achieved with the chosen sizes of components, construction and joints. The procedures are not based on a complete and mathematically exact expression of the relationships concerned and the mathematical basis is further restricted to terms for which data are usually obtainable.

demonstrate that constructed spaces are the predominant source of variability in assemblies. It is unlikely that prior implementation of tolerances on components would affect their size distribution noticeably, for reasons of manufacturing economics. However, the deviations of size within a batch of components may tend to be similar to each other, in which case the procedure in 7.6 should be used. The variability considered along any one axis is the total effect

The variabilities in sizes of constructed spaces and of components are assumed to follow normal distributions even if

there has been prior implementation of tolerances. Prior

implementation of tolerances on constructed space sizes is not

possible and their size distribution is thus undisturbed. Surveys

of all its constituent variabilities (for example, bow, twist, surface irregularity, etc.).

Commonly, the user will wish to examine one axis only but the procedures can be applied to each of the three dimensional axes in turn.

Procedures¹⁾ 7

7.1 Selecting a component target size when all components, and all joints, are of the same type PKE

s.iten.ai Decide on acceptable risks of misfit and read the values of Q

and q_{1} from figure 2, corresponding to the risk of the joint

ffdd4e7ec09b/isin choosing risks of misfit, the consequence of misfit must be considered. For example, if the cost of dealing with a misfit is too great the risk may have to be reduced.

7.1.2 Checking the jointing technique

Before calculating the minimum and maximum target sizes for components, ensure that the jointing technique can accommodate the range of variation in actual size of components and spaces.

Check that

$$(n + 1) (J_{\text{max}} - J_{\text{min}}) > (Q + q) \sqrt{n\sigma_{\text{comp}}^2 + \sigma_{\text{sp}}^2}$$

7.1.3 Component size - lower target size limit

Calculate the lower limit of component target size W_{\min} as follows:

$$W_{\min} = \frac{C_{sp} + E + \mu_{sp}}{n} + \frac{Q\sqrt{n\sigma_{comp}^2 + \sigma_{sp}^2}}{n}$$
$$- \frac{(n+1)J_{\max}}{n} - \mu_{comp}$$

¹⁾ Worked examples of application are given in annex B.

7.1.4 Component size – upper target size limit

Calculate the upper limit of component target size W_{max} as follows:

$$W_{\max} = \frac{C_{sp} + E + \mu_{sp}}{n} - \frac{q\sqrt{n\sigma_{comp}^2 + \sigma_{sp}^2}}{n}$$
$$- \frac{(n+1)J_{\min}}{n} - \mu_{comp}$$

7.1.5 Special case

In some cases $n\sigma_{
m comp}^2$ is so small compared with $\sigma_{
m sp}^2$ that the second expression in 7.1.3 becomes approximately equal to $\frac{Q\sigma_{sp}}{\sigma_{sp}}$ and the second expression in 7.1.4 becomes approximately $\frac{q\sigma_{\rm sp}}{n}$. If $\sigma_{\rm comp}^2$ is not known but $n\sigma_{\rm comp}^2$ can safely be assumed to be small, the same approximation can be made.

7.2 Calculating a target size for a space to contain standard (i.e. presized) components

7.2.1 Risk of misfit

Decide on acceptable values of misfit and read the value of Q and q, from figure 2, corresponding to the risks of the joint clearance being too large and too small respectively.

7.2.2 Calculation of maximum extension

Calculate the maximum extension $E_{\rm max}$ (i.e. the greatest amount by which the space target size can be bigger than its coordinating size for the chosen risk of misfit) as follows:

$$E_{\text{max}} = n(W_{\text{comp}} + \mu_{\text{comp}}) + (n + 1)J_{\text{ma}}$$
$$- Q\sqrt{n\sigma_{\text{comp}}^2 + \sigma_{\text{sp}}^2} - \mu_{\text{sp}} - C_{sp}$$

7.2.3 Calculation of minimum extension

Calculate the minimum extension E_{\min} (i.e. the least amount by which the space target size must be bigger than its coordinating size for the chosen risk of misfit) as follows:

7.1.6 Selecting the target size of the component from $\mathbf{PRF}_{E_{\min}} = n(\mathbf{W}_{comp} + \mu_{comp}) + (n + 1)J_{\min}$ the range calculated in 7.1.3 and Z14 STANDARD (standards.iteh.aig $\sqrt{n\sigma_{comp}^2 + \sigma_{sp}^2} - \mu_{sp} - C_{sp}$ Use the following procedure. a) Select any target size which lies above the lower limit

and below the upper limit; or ISO 3443-3:197,2.4 Calculation of deduction

b) If the component, being a standard component/standards/sist/3747af96-d098-4790-ba4b other uses and select a target size common to all of the ranges so calculated. If a size common to all of the ranges cannot be found, it may be necessary to repeat one or more of the calculations, varying the risks of misfit on other values. For example, for some uses it may be possible to accept a greater risk of misfit.

7.1.7 Calculating target sizes of components when used together with presized components

When some of the components occupying a space have predetermined target sizes, modify 7.1.3 and 7.1.4 so that the first expression

$$\frac{C_{\rm sp} + E + \mu_{\rm sp}}{n}$$

becomes

$$\frac{C_{\rm sp} + E + \mu_{\rm sp} - \Sigma W_{\rm d}}{n - n_{\rm d}}$$

where

 $\Sigma W_{\rm d}$ is the sum of all the predetermined target sizes;

 $n_{\rm d}$ is the number of components with predetermined target sizes.

have other uses, repeat the procedure in 7.1.3 and 7 trafforso-344 Any extension value selected from the range calculated in 7.2.2 and 7.2.3, added to the coordinating size of the space, gives a target size for the space such that the chosen risk of misfit is not exceeded. The selected value of extension is then used as the deduction for each of the components forming the space (see figure 1).

7.3 Selecting a jointing technique when using components with a predetermined target size (for example standard components)

7.3.1 Risk of misfit

Decide on acceptable risks of misfit and read the values of Q and q, from figure 2, corresponding to the risks of the joint clearance being too large and too small respectively.

7.3.2 Minimum predicted joint clearance

Calculate the minimum clearance predicted clearance j_{\min} which the jointing technique needs to accommodate, as follows:

$$\dot{u}_{\min} = \frac{C_{\rm sp} + E + \mu_{\rm sp}}{n+1} - \frac{n(W_{\rm comp} + \mu_{\rm comp})}{n+1}$$
$$- \frac{q\sqrt{n\sigma_{\rm comp}^2 + \sigma_{\rm sp}^2}}{n+1}$$

5

Figure 2 - Q and q relate to the probabilities of "joints too large" and "joints too small" respectively

7.3.3 Maximum predicted joint clearance

Calculate the maximum predicted clearance j_{\max} which the jointing technique needs to accommodate, as follows:

....

$$j_{\max} = \frac{C_{sp} + E + \mu_{sp}}{n+1} - \frac{n(W_{comp} + \mu_{comp})}{n+1} + \frac{Q\sqrt{n\sigma_{comp}^2 + \sigma_{sp}^2}}{n+1}$$

7.3.4 Special case

As specified in 7.1.5, the third expressions in 7.3.2 and 7.3.3 may be approximately equal to

$$\frac{q\sigma_{\rm sp}}{n+1}$$
 and $\frac{Q\sigma_{\rm sp}}{n+1}$ respectively.

7.3.5 Selecting the jointing technique

The jointing technique, or battery of techniques, selected must be capable of accommodating the whole range of clearances between the maximum and the minimum, and therefore J_{\min} must be less than the calculated minimum joint clearance in 7.3.2 and J_{max} must be greater than the calculated maximum ioint clearance in 7.3.3. i l'eh S'l'AND

7.4 Procedure for dealing with components or If a number, m, of the component size deviations are mutually joints with dissimilar characteristics

7.4.1 Different values of component target size and 3443-3:198 component systematic deviationtandards.iteh.ai/catalog/standards/sist/37/no296-d49824790-ba4b-

The calculations in 7.3.2 and 7.3.3 assume that the values for the expression:

 $W_{\rm comp}$ + $\mu_{\rm comp}$ (target size of component + systematic deviation of component)

are equal for all the *n* components. If they differ significantly add them together instead of multiplying them by n.

7.4.2 Different values of J_{min}

The calculation in 7.1.4 assumed that all of the (n + 1) joints have equal values for J_{\min} . If they differ, add their values for J_{\min} together instead of multiplying J_{\min} by (n + 1).

7.5 Procedure if some joints in a sequential assembly are to be constructed to a constant width

Sometimes a constant joint width is to be achieved between successive components until the last few components are placed, when the last few joints have to share the remaining gaps. In such cases, in the calculations, treat the constant width joints as though they were components.

7.6 Procedure if deviations are not independent

Where more than one component is to occupy a space, the calculations assume that all deviations are independent of each other. This cannot be assumed if, for example, it is known that components will all be produced from the same mould, or if gaps will be determined by the occurrence of oversized or undersized components, as when placing every component in relation to a grid.

Such dependencies are called correlations, and the strength of a dependency is measured by the correlation coefficient, r. This is zero, for example, when components are drawn randomly from stock made up of many production runs, but could be as high as 0,8 when components come from the same mould over a comparatively short production run.

becomes

correlated, the expression

$$\sqrt{n\sigma_{\rm comp}^2 + rm(m-1)\sigma_{\rm comp}^2 + \sigma_{\rm sp}^2}$$

The value of r will seldom be known accurately, so that it must be estimated subjectively. If there is reason to believe that positive mutual correlation will exist, it is better to use an arbitrary value for r of, say, 0,5 than to neglect it. However in the calculation of target sizes for standard components for general use, correlation between component sizes may be ignored.