This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: A829/A829M - 11 A829/A829M - 14

Standard Specification for Alloy Structural Steel Plates¹

This standard is issued under the fixed designation A829/A829M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

1.1 This specification covers structural quality alloy steel plates.

1.2 The plates are usually specified to chemical composition requirements, but tensile properties may also be specified.

1.2.1 When tensile properties are required, the specific requirements must be compatible with the chemical composition, condition, and plate thickness.

1.3 The plates are available in the following four conditions:

- 1.3.1 Condition AR—As rolled (hot rolled),
- 1.3.2 Condition A-Annealed,
- 1.3.3 Condition N—Normalized, and
- 1.3.4 Condition NT-Normalized and tempered.
- 1.4 The plates are available in the following three forms:
- 1.4.1 Form I-Rectangular,
- 1.4.2 Form II—Circular and semi-circular, and CII STAID TOP
- 1.4.3 Form III-Sketch, including rings.

1.5 The plates are available in the following five edge categories:

- 1.5.1 Edge 1—Mill edge,
- 1.5.2 Edge 2—Universal mill edge,
- 1.5.3 Edge 3-Sheared edge,
- 1.5.4 Edge 4-Gas cut edge, and
- 1.5.5 Edge 5—Special cut edge.

ASTM A829/A829M-14

1.6 The plates are available in the following seven finishes: 1.6.1 *Finish 1*—As rolled (hot rolled),

- 1.6.2 Finish 2-Blast cleaned,
- 1.6.3 Finish 3-Blast cleaned and oiled,
- 1.6.4 Finish 4-Pickled,
- 1.6.5 Finish 5-Pickled and oiled,
- 1.6.6 Finish 6-Painted, one prime coat, and
- 1.6.7 Finish 7—Painted, one prime coat and one finish coat.
- 1.6.8 The plates are usually specified to have Finish 1.

1.7 Supplementary requirements are provided for additional requirements that may be specified on the order.

1.8 When the steel is to be welded, it is presupposed that a welding procedure suitable for the grade of steel and intended use or service will be utilized. See Appendix X3 of Specification A6/A6M for information on weldability.

1.9 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

*A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.02 on Structural Steel for Bridges, Buildings, Rolling Stock and Ships.

Current edition approved Nov. 15, 2011 May 1, 2014. Published December 2011 May 2014. Originally approved in 1984. Last previous edition approved in 20042011 as A829/A829M – 06: A829/A829M – 01: 10.1520/A0829_A0829M-11: 10.1520/A0829_A0829M-14.

2. Referenced Documents

2.1 ASTM Standards:²

A6/A6M Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling

3. Ordering Information

3.1 Orders for plates under this specification should include the following information:

3.1.1 ASTM designation and year of issue.

3.1.2 Grade (see 5.1) or chemical composition (see 5.2).

- 3.1.3 Tensile properties, if required (see Section 6).
- 3.1.4 Coarse austenitic grain size, if required (see 4.1).
- 3.1.5 Condition (see 1.3).
- 3.1.6 Form (see 1.4).
- 3.1.7 Edge, if other than Edge 3 or 4 (see 4.3).
- 3.1.8 Finish (see 1.6).
- 3.1.9 Dimensions of plate.

3.1.10 Limitations on repair by welding, if any (see 4.5.2).

3.1.11 Supplementary Requirements, if any, including all the additional information called for in the Supplementary Requirements.

4. Materials and Manufacture

4.1 The steel shall be made to fine grain practice, unless coarse austenitic grain size is specified in the purchase order.

4.2 The plates shall be furnished in the condition specified in the purchase order.

4.2.1 Plates specified to be furnished in a heat-treated condition shall be heated to a suitable temperature at or above the upper critical temperature, but not exceeding 1700°F [925°C], held a sufficient length of time to attain essentially uniform temperature throughout, and cooled as appropriate for the condition specified.

4.3 *Edge*—Unless otherwise specified on the order, Edge 3 shall be furnished; provided, however, that Edge 4 may be furnished in place of Edge 3 at the supplier's option.

4.4 Finish—The plates shall be furnished with a finish as specified on the order.

4.5 Repair by Welding:

4.5.1 Repairs by welding shall be performed by competent welders using low-hydrogen electrodes selected so that the chemical composition of the deposited weld metal is similar to the nominal composition of the base plate.

4.5.2 If repair by welding is not acceptable, or if approval of the welding procedure by the purchaser is required, the order shall

so specify and ards. iteh. ai/catalog/standards/sist/95d70a9b-70a7-4a74-83b7-691878baf62c/astm-a829-a829m-14

5. Chemical Composition

5.1 The heat analysis shall conform to the requirements for the applicable grade listed in Table 1, unless otherwise specified as in 5.2.

5.2 The chemical composition for heat analysis may be specified in accordance with the ranges and limits listed in Table 2. In such instances, the heat analysis shall conform to the requirements specified on the order.

6. Tensile Requirements

6.1 When tensile requirements are specified, the requirements must be compatible with the chemical composition, condition, and the plate thickness.

6.2 The specified tensile strength range shall be not less than the applicable range listed in Table 3.

7. General Requirements for Delivery

7.1 Material furnished under this specification shall conform to the requirements of the current edition of Specification A6/A6M, for the ordered material, unless a conflict exists in which case this specification shall prevail.

8. Certification

8.1 A report of the heat analysis and the results of all tests required by the order shall be furnished to the purchaser. The report shall also include a certification that the material was manufactured in accordance with the requirements of this specification.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

A829/A829M - 14

TABLE 1 Standard Steels Alloy Plate Compositions

NOTE 1-Where "..." appears in this table there is no requirement.

	Chemical Composition Limits, %										
Grade Number	Garbon	Manganese	Phosphorus, max	Sulfur, max	Silicon	Nickel	Chromium	Molybdenum	Vanadium min		
1330	0.28-0.33	1.60–1.90	0.035	0.040	0.15-0.35						
1335	0.33-0.38	1.60-1.90	0.035	0.040	0.15 0.35						
1340	0.38-0.43	1.60-1.90	0.035	0.040	0.15-0.35						
1345	0.43-0.48	1.60-1.90	0.035	0.040	0.15-0.35						
_	_	_	_	-	_	-	_	_	_		
4118	0.18-0.23	0.70-0.90	0.035	0.040	0.15-0.35		0.40-0.60	0.08-0.15			
4130	0.28-0.33	0.40-0.60	0.035	0.040	0.15-0.35		0.80-1.10	0.15-0.25			
4135	0.32-0.39	0.65 0.95	0.035	0.040	0.15 0.35		0.80-1.10	0.15 0.25			
4137	0.35 0.40	0.70 0.90	0.035	0.040	0.15 0.35		0.80-1.10	0.15 0.25			
4140	0.36 0.44	0.75-1.00	0.035	0.040	0.15 0.35		0.80-1.10	0.15 0.25			
4142	0.38-0.46	0.75-1.00	0.035	0.040	0.15-0.35		0.80-1.10	0.15-0.25			
4145	0.43-0.48	0.75-1.00	0.035	0.040	0.15-0.35		0.80-1.10	0.15-0.25			
4150	0.48-0.53	0.75-1.00	0.035	0.040	0.15-0.35		0.80-1.10	0.15-0.25			
4340	0.38 0.43	0.60 0.80	0.035	0.040	0.15 0.35	1.65 2.00	0.70 0.90	0.20 0.30			
E4340	0.38 0.43	0.65-0.85	0.025	0.025	0.15-0.35	1.65 2.00	0.70-0.90	0.20-0.30			
_	-	-	-	-	_		_	-	_		
4615	0.13-0.18	0.45-0.65	0.035	0.040	0.15-0.35	1.65-2.00		0.20-0.30			
4617	0.15-0.20	0.45-0.65	0.000	0.040	0.15-0.35	1.65-2.00		0.20-0.30			
4620	0.17-0.22	0.45-0.65	0.005	0.040	0.15-0.35	1.65-2.00		0.20-0.30			
4020	0.17-0.22	0.40-0.00	0.000	0.040	0.15-0.55	1.05-2.00		-			
5160	0.56 0.64	0.75-1.00	0.035	0.040	0.15 0.35	-	0.70-0.90				
5100	0.50-0.04	0.75-1.00	0.000	0.040	0.15-0.55	-	0.70-0.50	-			
- 6150	- 0.48-0.53	_ 0.70_0.90	- 0.035	- 0.040			_ 0.80_1.10		- 0.15		
0150	0.40-0.55	0.70-0.90	0.035	0.040	0.15-0.35		0.00-1.10		0.15		
8615	0.13-0.18	0.70-0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25			
8617	0.15-0.20	0.70-0.90 0.70-0.90	0.035 0.035	e 0.040	0.15-0.35	0.40-0.70	0.40-0.60 0.40-0.60	0.15-0.25			
8620	0.18-0.20 0.18-0.23	0.70 0.90	0.035	0.040	0.15 0.35	0.40 0.70	0.40 0.60	0.15-0.25			
8622	0.18 0.23	0.70-0.90 0.70-0.90	0.035 0.035	0.040 0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25 0.15-0.25			
											
8625	0.23 0.28	0.70_0.90	0.035	0.040	0.15-0.35	0.40 0.70	0.40 0.60	0.15-0.25			
8627	0.25-0.30	0.70 0.90	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25			
8630	0.28 0.33	0.70 0.90	0.035	0.040	0.15 0.35	0.40 0.70	0.40 0.60	0.15 0.25			
8637	0.35 0.40	0.75 1.00	0.035	0.040	0.15 0.35	0.40 0.70	0.40 0.60	0.15 0.25			
8640	0.38 0.43	0.75_1.00	0.035	0.040	0.15 0.35	0.40 0.70	0.40 0.60	0.15 0.25			
8655	0.51-0.59	0.75-1.00	0.035	0.040	0.15-0.35	0.40-0.70	0.40-0.60	0.15-0.25			
8742	0.40-0.45	0.75-1.00	0.035	AST 0.040 82	0.15-0.35	0.40-0.70	0.40-0.60	0.20-0.30			

https://standards.iteh.ai/catalog/starTABLE 1 Standard Steels Alloy Plate Compositions 878baf62c/astm-a829-a829m-14

NOTE 1-Where "..." appears in this table there is no requirement.

	Chemical Composition Limits, %									
<u>Grade</u> Number	Carbon	Manganese	<u>Phosphorus,</u> <u>max</u>	<u>Sulfur,</u> <u>max</u>	Silicon	Nickel	Chromium	Molybdenum	<u>Vanadium,</u> <u>min</u>	
1330 1335 1340 1345	0.28–0.33 0.33–0.38 0.38–0.43 0.43–0.48	1.60-1.90 1.60-1.90 1.60-1.90 1.60-1.90	0.030 0.030 0.030 0.030	0.040 0.040 0.040 0.040	0.15-0.35 0.15-0.35 0.15-0.35 0.15-0.35	···· ···· ···	···· ···· ···	 	···· ···· ····	
$\begin{array}{r} 4\overline{118} \\ 4\overline{130} \\ 4\overline{135} \\ 4\overline{137} \\ 4\overline{137} \\ 4\overline{140} \\ 4\overline{142} \\ 4\overline{145} \\ 4\overline{150} \\ 4\overline{340} \\ \underline{4\overline{340}} \\ \underline{4\overline{340}} \\ \underline{4\overline{340}} \end{array}$	$\begin{array}{r} 0.18-0.23\\ \hline 0.28-0.33\\ \hline 0.32-0.39\\ \hline 0.35-0.40\\ \hline 0.36-0.44\\ \hline 0.38-0.46\\ \hline 0.43-0.48\\ \hline 0.48-0.53\\ \hline 0.38-0.43\\ \hline 0.38-0.43\\ \hline 0.38-0.43\\ \hline 0.38-0.43\\ \hline 0.38-0.43\\ \hline \end{array}$	$\begin{array}{c} 0.70 \\ \hline 0.40 \\ \hline 0.65 \\ \hline 0.65 \\ \hline 0.75 \\ \hline 0.75 \\ \hline 1.00 \\ \hline 0.60 \\ \hline 0.80 \\ \hline 0.65 \\ \hline 0.85 \\ \hline \end{array}$	$\begin{array}{c} 0.\overline{030} \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.030 \\ 0.025 \end{array}$	$\begin{array}{c} 0.\overline{040}\\ 0.040\\ 0.040\\ 0.040\\ 0.040\\ 0.040\\ 0.040\\ 0.040\\ 0.040\\ 0.040\\ 0.025\\ \end{array}$	$\begin{array}{r} 0.15 \hline -0.35\\ \hline 0.15 \hline $	- 1.65-2.00 1.65-2.00	0.40-0.60 0.80-1.10 0.80-1.10 0.80-1.10 0.80-1.10 0.80-1.10 0.80-1.10 0.80-1.10 0.80-1.10 0.80-1.10 0.80-1.10 0.80-1.00 0.70-0.90 0.70-0.90	$\begin{array}{r} 0.08 - 0.15 \\ \hline 0.15 - 0.25 \\ \hline 0.20 - 0.30 \\ \hline 0.20 - 0.30 \\ \hline 0.20 - 0.30 \\ \hline \end{array}$		
4615 4617 4620	0.13-0.18 0.15-0.20 0.17-0.22	0.45-0.65 0.45-0.65 0.45-0.65	0.030 0.030 0.030	$ \begin{array}{r} 0.\overline{040} \\ 0.040 \\ 0.040 \end{array} $	0.15-0.35 0.15-0.35 0.15-0.35	1.65–2.00 1.65–2.00 1.65–2.00	- 	0.20-0.30 0.20-0.30 0.20-0.30	- 	
5160	0.56-0.64	0.75-1.00	0.030	<u>0.040</u>	0.15-0.35	_ 	0.70-0.90	_ 	_ 	
6150	0.48-0.53	0.70-0.90	0.030	0.040	0.15-0.35		0.80-1.10	- 	0.15	