

Designation: D893 - 12 D893 - 14

Standard Test Method for Insolubles in Used Lubricating Oils¹

This standard is issued under the fixed designation D893; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 This test method covers the determination of pentane and toluene insolubles in used lubricating oils.
- 1.2 *Procedure A* covers the determination of insolubles without the use of coagulant in the pentane. It provides an indication of the materials that can readily be separated from the oil-solvent mixtures by centrifuging.
- 1.3 *Procedure B* covers the determination of insolubles in oils containing detergents and employs a coagulant for both the pentane and toluene insolubles. In addition to the materials separated by using Procedure A, this coagulation procedure separates some finely divided materials that may be suspended in the oil.

Note 1—Results obtained by Procedures A and B should not be compared since they usually give different values. The same procedure should be employed when comparing values obtained periodically on an oil in use or when comparing results determined by two or more laboratories.

- 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
- 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 7 and 9.1.1.

2. Referenced Documents

2.1 ASTM Standards:²

D1193 Specification for Reagent Water

D4057 Practice for Manual Sampling of Petroleum and Petroleum Products

D4177 Practice for Automatic Sampling of Petroleum and Petroleum Products

3. Terminology

ASTM D893-14

- 3.1 Definitions: dards_iteh.ai/catalog/standards/sist/d32c92a8-a878-458f-8flb-691fc477cca0/astm-d893-14
- 3.1.1 coagulate, v—to cause to become viscous or thickened into a coherent mass.
- 3.1.2 coagulated pentane insolubles, n—in used oil analysis, separated matter that results when a coagulant is added to a solution of used oil in pentane.

3.1.2.1 Discussion—

The addition of a coagulant will aid in separating finely divided materials that may have been held in suspension because of the dispersant characteristics of the oil.

- 3.1.3 coagulated toluene insolubles, n—in used oil analysis, coagulated and separated matter not soluble in pentane or toluene.
- 3.1.4 pentane insolubles, n—in used oil analysis, separated matter resulting when a used oil is mixed with pentane.

3.1.4.1 Discussion—

¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee D02.06 on Analysis of Lubricants.

Current edition approved April 15, 2012May 1, 2014. Published May 2012May 2014. Originally approved in 1967. Last previous edition approved in 20112012 as D893D893 – 12.—11. DOI: 10.1520/D0893-12.10.1520/D0893-14.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

In this test method, the separation is effected by centrifugation.

- 3.1.5 toluene insolubles, n—in used oil analysis, the portion of pentane insolubles not soluble in toluene.
- 3.1.6 *used oil, n*—any oil that has been in a piece of equipment (for example, an engine, gearbox, transformer, or turbine), whether operated or not.

3.1.6.1 Discussion—

In this test method, the oil can be any oil that has been used for lubrication.

- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 insoluble resins, n—in used oil analysis, separated matter soluble in toluene but not pentane.

3.2.1.1 Discussion—

Insoluble resins can be calculated for either Procedure A or B by subtracting the toluene insolubles from the pentane insolubles.

4. Summary of Test Method

- 4.1 *Procedure A*—A representative sample of used lubricating oil is mixed with pentane and centrifuged. The oil solution is decanted and the precipitate washed twice with pentane, dried, and weighed to give the pentane insolubles. For toluene insolubles, a separate sample of the oil is mixed with pentane and then centrifuged. The precipitate is washed twice with pentane, once with toluene-alcohol solution, and once with toluene. The insoluble material is then dried and weighed to give the insolubles.
- 4.2 *Procedure B*—A representative sample of used lubricating oil is mixed with pentane-coagulant solution and centrifuged. The precipitate is washed twice with pentane, dried, and weighed to give coagulated pentane insolubles. For coagulated toluene insolubles a separate sample of the oil is mixed with pentane-coagulant solution and centrifuged. The precipitate is washed twice with pentane, once with toluene-alcohol solution, and once with toluene. The insoluble material is then dried and weighed to give coagulated toluene insolubles.

5. Significance and Use

- 5.1 Pentane insolubles can include oil-insoluble materials and some oil-insoluble resinous matter originating from oil or additive degradation, or both.
- 5.2 Toluene insoluble materials can come from (1) external contamination, (2) fuel carbon and highly carbonized materials from degradation of fuel, oil, and additives, or (3) engine wear and corrosion materials.
- 5.3 A significant change in pentane insolubles, toluene insolubles (with or without coagulant), and insoluble resins indicates a change in oil which could lead to lubrication system problems.
- 5.4 Insolubles measured can also assist in evaluating the performance characteristics of a used oil or in determining the cause of equipment failure.

6. Apparatus

- 6.1 *Centrifuge Tube*, cone-shaped, conforming to the dimensions given in Fig. 1, and made of thoroughly annealed glass. The graduations, numbered as shown in Fig. 1, shall be clear and distinct and the mouth constricted in shape for closure with a cork. Scale error tolerances and smallest graduations between various calibration marks are given in Table 1 and apply to calibrations made with air-free water at 20°C:20 °C.
- 6.2 Centrifuge, meeting all safety requirements for normal use and capable of whirling two or more filled centrifuge tubes at a speed that can be controlled to give a relative centrifugal force (rcf) between 600 and 700 at the tips of the tubes. The revolving head, trunnion rings, and trunnion cups, including the rubber cushion, shall be soundly constructed to withstand the maximum centrifugal force capable of being delivered by the power source. The trunnion cups and cushions shall firmly support the tubes when the centrifuge is in motion. The centrifuge shall be enclosed by a metal shield or case strong enough to eliminate danger if any breakage occurs. Calculate the speed of the rotating head as follows:

Speed, rpm =
$$1337 \sqrt{\text{rcf/}d}$$
 (1)

where:

rcf = relative centrifugal force, and

d = diameter swing, mm, measured between tips of opposite tubes when in rotating position.

Table 2 shows the relationship between the diameter of swing, ref and rpm.

6.3 Oven, explosion-proof, either explosion-proof, Class A, safety rated, or solvent venting, capable of maintaining a temperature of $\frac{105}{105}$ °C ± 3 °C.

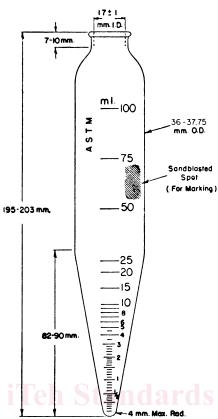


FIG. 1 ASTM Cone-Shaped Centrifuge Tube

TABLE 1 Calibration Tolerances of Cone-Shaped Centrifuge Tube

Range, mL	Division, mL	Maximum Scale Error, mL	
0 to 0.1	0.05	±0.02	
Over 0.1 to 0.3	ASTM 0.05 02_1/	±0.03	
Over 0.3 to 0.5	0.05	±0.05	
Over 0.5 to 1.0	sist/d32c 0.1 a8-a878-	458f_±0.05_691fc	
Over 1.0 to 2.0	0.1	±0.10	
Over 2.0 to 3.0	0.2	±0.10	
Over 3.0 to 5.0	0.5	±0.20	
Over 5.0 to 10.0	1.0	±0.50	
Over 10 to 25	5.0	±1.0	
Over 25 to 100	25.0	±1.0	

https://standards.iteh.ai/o

TABLE 2 Rotation Speeds for Centrifuges of Various Diameters of Swing

•	Diameter of Swing, mm ^A	rpm at 600 rcf	rpm at 700 rcf	
	483	1490	1610	
	508	1450	1570	
	533	1420	1530	
	559	1390	1500	

 $^{^{\}it A}$ Measured in millimetres between tips of opposite tubes when in rotating position.

6.4 *Balance*, having a sensitivity of $\frac{0.5 \text{ mg}}{0.1 \text{ g}} = \frac{0.5 \text{ mg}}{0.1 \text{ g}}$ for weighing the $\frac{100 \text{ mL}}{100 \text{ mL}}$ beaker and centrifuge tube, and a balance having a sensitivity of $\frac{0.1 \text{ g}}{0.1 \text{ g}} = \frac{0.1 \text{ g}}{0.1 \text{ g}}$ for weighing the oil sample.

7. Reagents and Solvents

7.1 Purity of Reagents—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where

such specifications are available.³ Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

- 7.2 *Purity of Water*—Unless otherwise indicated references to water shall be understood to mean water in accordance with Specification D1193, Type IV.
 - 7.3 n-butyl diethanolamine (2,2 1 (butylimino) diethanol). (Warning—May be harmful if inhaled or swallowed.)
- 7.4 Ethanol, denatured—conforming to either Formula 30 or 3A of the U.S. Bureau of Internal Revenue. (Warning—Flammable. Denatured. Cannot be made nontoxic.)
 - 7.5 *Pentane*—(Warning—Extremely flammable. Vapors may cause flash fires.)
 - 7.6 *Propan–2–ol (isopropyl alcohol)*—(Warning—Flammable. Denatured. Cannot be made nontoxic.)
 - 7.7 *Toluene*—(Warning—Flammable. Vapor harmful.)
- 7.8 *Toluene-Alcohol Solution*, wash solvent, made by mixing 1 volume of toluene (7.7) with 1 volume of denatured ethanol conforming to either Formula No. 30 or 3A of the U.S. Bureau of Internal Revenue. (**Warning**—Flammable. Denatured. Cannot be made nontoxic.)
- 7.9 *Pentane-Coagulant Solution*—Add 50 mL of *n*-butyl diethanolamine (**Warning**—Flammable) and 50 mL of isopropyl alcohol (2-propanol) (**Warning**—As used oil may change appreciably in storage, samples should be tested as soon as possible after removal from the lubricating system and the dates of sampling and testing should be noted) to 1 L of *n*-pentane (**Warning**—May be harmful if inhaled or swallowed) and mix.

8. Sampling

- 8.1 Obtain a sample using either Practice D4057 or D4177.
- 8.2 If the original container is of opaque material, or if it is more than three-fourths full, transfer the entire sample to a clear glass bottle having a capacity at least one third greater than the volume of the sample, and transfer all traces of sediment from the original container to the bottle by violent agitation of portions of the sample in the original container. Heat the sample of used oil at $60\underline{60}$ °C \pm 5°C5 °C for $30\underline{30}$ min \pm 1 min and agitate until all sediment is homogeneously suspended in the oil. After complete suspension of all sediment, strain the sample or a convenient aliquot through a $150-\mu m 150 \mu m$ (No. 100) sieve to remove large contaminating particles.

Note 2—When the sample is clear and transparent and visibly free of sediment, the straining procedure described above can be omitted.

9. Procedure A for Pentane and Toluene Insolubles Without Coagulant

- 9.1 Pentane Insolubles:
- 9.1.1 Dry a clean centrifuge tube for $30\underline{30}$ min ± 1 min at $105\underline{105}$ °C ± 3 °C, cool in a desiccator, and weigh to the nearest 1 mg. Weigh $10.0\underline{10.0}$ g ± 0.1 g of the prepared sample of used oil into the tube and fill to the 75-mL mark with pentane (**Warning**—May be harmful if inhaled or swallowed.). Stopper the tube and shake until the mixture is homogeneous. Do not allow the mixture to stand more than 3 h.
- 9.1.2 Remove the stopper, and using a wash bottle having a fine jet, wash all insolubles from the stopper with pentane into the centrifuge tube and bring the solvent level up to the $\frac{100 \text{ mL}}{100 \text{ mL}}$ mark. Arrange the tubes symmetrically about the centrifuge to minimize imbalance. In the event of an odd number of tubes, using water, fill a dummy tube to the same mass as the sample to balance the odd tube, and centrifuge for $\frac{2020 \text{ min}}{200 \text{ min}} \pm \frac{1 \text{ min}}{200 \text{ min}}$ at a rate calculated in accordance with 6.2, sufficient to produce a relative centrifugal force (rcf) between 600 and 700 at the tips of the whirling tubes. (See Table 2.) Carefully decant the supernatant liquid without disturbing or dispersing the precipitate, leaving not more than $\frac{3 \text{ mL}}{200 \text{ mL}} = \frac{3 \text{ mL}}{200 \text{ mL}}$ of liquid in the centrifuge tube.
- Note 3—Due to safety concerns when handling flammable materials, some laboratories have found it suitable to use refrigerated or explosion-proof centrifuges or hermetically sealed centrifuge cups with screw caps and seals.
- 9.1.3 Add $\frac{10 \text{ Im L}}{25 \text{ mL}} \pm \frac{1 \text{ mL}}{1 \text{ mL}}$ of pentane to the tube. Dislodge and break up all of the insolubles from the bottom of the tube by means of a clean stiff wire. Wash all insolubles adhering to the wire back into the tube with pentane, filling the tube to the $\frac{25 \text{ mL}}{25 \text{ mL}} \pm \frac{1}{10 \text{ min}} \pm \frac$
 - 9.1.4 Repeat the entire operation described in 9.1.3.
- 9.1.5 Dry the centrifuge tube containing the washed precipitate for $30\underline{30}$ min ± 1 min at $105\underline{105}$ °C ± 3 °C, cool in desiccator, and weigh to the nearest 1 mg.

³ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Annual Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.