

Designation: B505/B505M - 14

Standard Specification for Copper Alloy Continuous Castings¹

This standard is issued under the fixed designation B505/B505M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

- 1.1 This specification establishes requirements for continuously cast rod, bar, tube, and shapes produced from copper alloys with nominal compositions as listed in Table 1.²
- 1.2 Castings produced to this specification may be manufactured for and supplied from stock. In such cases the manufacturer shall maintain heat traceability to specific manufacturing date and chemical analysis.
- 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:³

B208 Practice for Preparing Tension Test Specimens for Copper Alloy Sand, Permanent Mold, Centrifugal, and Continuous Castings

B824 Specification for General Requirements for Copper Alloy Castings

B846 Terminology for Copper and Copper Alloys

 $^{\rm 1}$ This specification is under the jurisdiction of ASTM Committee B05 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.05 on Castings and Ingots for Remelting.

Current edition approved April 1, 2014. Published May 2014. Originally approved in 1970. Last previous edition approved in 2012 as B505/B505M – 12a. DOI: 10.1520/B0505 B0505M-14.

² The UNS system for copper and copper alloys (see Practice E527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00". The suffix can be used to accommodate composition variations of the base alloy.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

E8/E8M Test Methods for Tension Testing of Metallic Materials

E10 Test Method for Brinell Hardness of Metallic Materials E18 Test Methods for Rockwell Hardness of Metallic Materials

E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition

E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)

3. Terminology

3.1 For definitions of terms related to copper and copper alloys, refer to Terminology B846.

4. General Requirements

- 4.1 The following sections of Specification B824 form a part of this specification. The definition of a casting lot as defined in Section 12, Sampling, takes precedence over Specification B824.
 - 4.1.1 Terminology (Section 3),
 - 4.1.2 Other Requirements (Section 7),
 - 4.1.3 Workmanship, Finish, and Appearance (Section 9),
 - 4.1.4 Number of Tests and Retests (Section 11),
 - 4.1.5 Specimen Preparation (Section 12),
 - 4.1.6 Test Methods (Section 13),
 - 4.1.7 Significance of Numerical Limits (Section 14),
 - 4.1.8 Inspection (Section 15),
 - 4.1.9 Rejection and Rehearing (Section 16),
 - 4.1.10 Certification (Section 17),
 - 4.1.11 Test Report (Section 18),
 - 4.1.12 Product Marking (Section 19),
 - 4.1.13 Packaging and Package Marking (Section 20),
 - 4.1.14 Keywords (Section 21), and
 - 4.1.15 Supplementary Requirements.

5. Ordering Information

- 5.1 Include the following information in orders for product:
- 5.1.1 ASTM designation and year of issue (for example, B505/B505M-04),
- 5.1.2 Copper Alloy UNS No. (for example, C93200), including HT if heat treatment is required.
- 5.1.3 Condition (Table 9) and (as cast, heat treated, and so forth),

TABLE 1 Nominal Composition

Copper		Composition, %											
Alloy UNS No.	Designation	Copper	Tin	Lead	Zinc	Nickel	Aluminum	Iron	Manganese	Silicon	Phosphorus	Bismuth	Sulfur
C83470	low-lead sulfur tin bronze	93	4		2	0.5							0.5
C83600	leaded red brass	85	5	5	5								
C83800	leaded red brass	82.9	3.8	6	6.5								
C84200	leaded semi-red brass	80	5	2.5	13								
C84400	leaded semi-red brass	80	2.9	7	8.5								
C84800	leaded semi-red brass	76	2.5	6.2	15		•••						
C85470	vellow brass	62.5	2.5		34.3		0.5				0.13		
C85700	leaded naval brass	61	1	1.2	36	•••			•••				
C86200		63			25	•••	4	3	2.0				•••
	high-strength yellow brass								3.8			•••	
C86300	high-strength yellow brass	63			25		6.2	3	3.8				
C86500	high-strength yellow brass	57.5		•••	39	•••	1	1.2	8.0	•••		•••	•••
C87700	silicon bronze	88.5			8					3			
C87710	silicon bronze	86			10					4			
C87850	silicon brass	76			20.9					3	0.12		
C89320	bismuth tin bronze	89	6									5.0	
C89720 ^A	bismuth brass	67.4	1		29		0.5			0.5		1.5	
C90300	tin bronze	87.5	8.2		4				•••		•••		
C90500	tin bronze	87.5	10		2								
C90700	tin bronze	89	11						•••				
					•••				•••				
C91000	tin bronze	85 80 F	15		•••					•••			•••
C91300	tin bronze	80.5	19										•••
C92200	leaded tin bronze	88	6	1.5	4					•••			
C92300	leaded tin bronze	87	8.2	0.6	3.8					•••			
C92500	nickel-phosphor bronze	86.5	11	1.2		1.2							•••
C92700	leaded tin bronze	87.5	10	1.8		ton	d are	GI.					
C92800	leaded tin bronze	80	16	5		t QLII	uali	<u> </u>					
C92900	leaded nickel-tin	84	10	2.6		3.4							
	bronze												
C93200	high-leaded tin bronze	83	6.9	7	3								
C93400	high-leaded tin bronze	83.5	8	8		1 000	I Carbo	10.0	11.001		•••		
C93500	•	84.5	5.2	9	4								
	high-leaded tin bronze				\mathbf{m}^{1}	nf	Dray		X 7	•••			
C93600	high-leaded tin bronze	81	7	12		Mu.		Transfer					•••
C93700	high-leaded tin bronze	80	10	9.5	• • • •	•••	•••			•••			•••
C93800	high-leaded tin bronze	77	6.9	14.5	•••								
C93900	high-leaded tin bronze	78	6	16						•••			
C94000	high-leaded tin bronze	70.5	13	15	M.B.	505Æ5	05M-14						
C94100	high-leaded tin bronze	75.5	5.5	20		0.155	. (1.77.)	1	= = 1 0 0 = m	- 1 20	1 =0 =	1 = 0 =	4 4
C94300	high-leaded tin bronze	69.5	5.2	S1S 25	ceeca	U-bdc	2-4b43-a	a/5-t	0551307ff) 16/as	tm-6505-	b505m-	14
C94700	nickel-tin bronze	87.5	5.2	0	1.8	5.2							
C94800	leaded nickel-tin bronze	86.5	5.2	0.6	1.8	5.2							
C95200	aluminum bronze	87.8					9	3.2					
C95300	aluminum bronze	88.8					10	1.2			•••		
C95400	aluminum bronze	85.2			•••		10.8	4					•••
C95410	aluminum bronze	83.2				2	10.8	4					
C95500				•••	•••	4.2				•••			
	nickel-aluminum bronze	81					10.8	4					
C95520	nickel-aluminum bronze	79.1	•••	•••	•••	5.1	11	4.8		•••			•••
C95700	manganese nickel aluminum	74.8		•••		2.2	7.5	3	12.5				
005000	bronze										•••		
C95800	nickel-aluminum bronze	81.3	•••	•••	•••	4.5	9	4	1.2	•••		•••	•••
C95900	aluminum bronze	83.2					12.8	4.0					
C96400	copper-nickel	67				30		0.90					
C96900	copper-nickel	76.8	8			15			0.20				
C96970	copper-nickel-tin	85	6			9.0							
C97300	leaded nickel bronze	55.5	2.2	9.5	21	12.5							
C97600	leaded nickel bronze	65	4	4	6	20.2							
C97800	leaded nickel bronze	65.5	4.8	1.8	2.5	25.5							
C99500	special alloy	89.1			1.2	4.5	1.2	4.0		1.3			

Antimony 0.07, Boron 0.001.

5.1.5 Form: cross-section, such as tube, round, hexagon, octagon, square, or rectangle,

^{5.1.4} Dimensions: inside diameter, outside diameter, thickness and width,

TABLE 2 Suggested Heat Treatments

Copper Alloy UNS No.	Solution Treatment (not less than 1 h followed by water quench), °F [°C]	Annealing Treatment (not less than 2 h followed by air cool), °F [°C]
C95300	1585–1635 [860–890]	1150–1225 [620–660]
C95400, C95410, C95500	1600–1675 [870–910]	1150–1225 [620–660]
C95520	(2 h followed by water quench) 1600–1700 [870–925]	925–1000 [495–540]

TABLE 3 Finishing Allowances for Tube (Round Only)

TABLE 3 Fillishing Allowances for Tube (Noutla Only)						
	Finish Allowances Added to					
Finished Outside Diameter,	Finished	Finished or Print				
· · · · · · · · · · · · · · · · · · ·	Dimensions of the Part, in. [mm]					
in. [mm]	Inside Diameter	Outside Diameter				
All Alloys Except as Noted Below						
Up to 4 [102], excl	-0.031 [-0.79]	+ 0.031 [0.79]				
4 [102] -5 [127], incl	-0.063 [-1.6]	+ 0.063 [1.6]				
Over 5 [127]	-0.094 [-2.4]	+ 0.094 [2.4]				
Copper Alloy UNS Nos. C85470, C862	00, C86300, C86500,	C87700, C87710,				
C87850, C89720, C95200, C95300, C95400, C95500, C95800, C9590						
C96400						
Up to 3 [76.2], incl	-0.125 [-3.2]	+ 0.063 [1.6]				
Over 3 [76.2] -4 [102], incl	-0.125 [-3.2]	+ 0.094 [2.4]				
Over 4 [102] -5½ [140], incl	-0.188 [-4.8]	+ 0.125 [3.2]				
Over 5½ [140]	-0.250 [-6.4]	+ 0.188 [4.8]				
	nttno./	ZOTOTO				

TABLE 4 Finishing Allowances for Rod and Bar

Finished Outside Diameter or Distance Between Parallel Surfaces, in. [mm]	Rounds	Squares, Rectangles, Hexagons, Octagons				
All Alloys E	xcept as Noted Below					
Up to 4 [102], excl	+ 0.031 [0.79]	SIS + 0.031 [0.79] - 0				
4 [102] -5 [127], incl	+ 0.063 [1.6]	+ 0.063 [1.6]				
Over 5 [127]	+ 0.094 [2.4]	+ 0.094 [2.4]				
Copper Alloy UNS Nos. C85470, 0	C86200, C86300, C865	00, C87700, C87710,				
C87850, C89	9720, C95200, C95300,					
C95400, C95500, C95800, C95900, C96400						
Up to 3 [76.2], incl	+ 0.0625 [1.6]	+ 0.0625 [1.6]				
Over 3 [76.2] -4 [102], incl	+ 0.093 [2.4]	+ 0.093 [2.4]				
Over 4 [102] -5½ [140], incl	+ 0.125 [3.2]	+ 0.125 [3.2]				
Over 5½ [140]	+ 0.188 [4.8]	+ 0.188 [4.8]				

- 5.1.6 Tolerances, if different from Section 10 and Tables 2-8.
- 5.1.7 Length (including length tolerance if other than mill lengths),
- 5.1.8 Number of castings or total weight, for each size and form.
- 5.1.9 ASME Boiler and Pressure Vessel Code⁴ requirements (if required see Section 9),

TABLE 5 Diameter Tolerances for Rod and Bar

ameter or Distance Be-	Tolerances, Plus ^A and Minus, ^A in. [mm]				
veen Parallel Surfaces,		Squares, Rectangles,			
*	Rounds	Hexagons,			
111. [111111]		Octagons			
All Alloys Except as Noted Below					
4 [102], excl	0.005 [0.13]	0.016 [0.41]			
-5 [127], incl	0.008 [0.20]	0.016 [0.41]			
[127]	0.016 [0.41]	0.016 [0.41]			
er Alloy UNS Nos. C85470, C8	6200, C86300, C8	6500, C87700, C87710,			
350, C89720, C95200, C95300,	C95400, C95500,	C95800, C95900, and			
C96400					
3 [76.2], incl	0.010 [0.25]	0.020 [0.51]			
[76.2] -4 [102], incl	0.015 [0.38]	0.020 [0.51]			
[102] -5½ [140], incl	0.020 [0.51]	0.020 [0.51]			
1/2 [140]	0.025 [0.64]	0.025 [0.64]			
4 [102], excl -5 [127], incl [127] er Alloy UNS Nos. C85470, C8 150, C89720, C95200, C95300, 150, C89720, C95300,	ept as Noted Below 0.005 [0.13] 0.008 [0.20] 0.016 [0.41] 6200, C86300, C8 C95400, C95500, 96400 0.010 [0.25] 0.015 [0.38] 0.020 [0.51]	Octagons v 0.016 [0.41] 0.016 [0.41] 0.016 [0.41] 0.016 [0.41] 6500, C87700, C877 C95800, C95900, ar 0.020 [0.51] 0.020 [0.51] 0.020 [0.51]			

^A When tolerances are specified as all plus or all minus, double the values given.

TABLE 6 Diameter Tolerances for Tube (Round Only)

	Tolerances, in. [mm]						
Average Outside Diameter,	Outside Inside Di		liamotor				
in. [mm]	Diameter	Iliside D	nametei				
iii. Įiiiiij	Plus ^A or Minus ^A	Plus ^B	Minus ^B				
All Alloys Except as Noted Below							
Up to 4 [102], excl	0.005 [0.13]	0.012 [0.30]	0.033 [0.84]				
4 [102] -5 [127], incl	0.008 [0.20]	0.016 [0.41]	0.046 [1.2]				
Over 5 [127]	0.016 [0.41]	0.032 [0.81]	0.064 [1.6]				
Copper Alloy UNS Nos. C8547	0, C86200, C86	300, C86500, C8	37700, C87710,				
C87850, C89720, C95200, C95300, C95400, C95500, C95800, C95900, and							
.1	C96400						
Up to 3 [76], incl	0.010 [0.25]	0.012 [0.32]	0.033 [0.84]				
Over 3 [76] -4 [102], incl	0.015 [0.38]	0.015 [0.38]	0.050 [1.3]				
Over 4 [102] -5½ [140], incl	0.020 [0.51]	0.025 [0.64]	0.070 [1.8]				
Over 5½ [140]	0.025 [0.64]	0.035 [0.86]	0.090 [2.3]				

^A When tolerances are specified as all plus or all minus double the values given. ^B When tolerances are specified as all plus or all minus, total the values given.

TABLE 7 Roundness Tolerances

Outside Diameter, in. [mm]	Maximum Out-of-Roundness, ^A in. [mm]				
Up to 4 [102], excl	SUII- 00 0.020 [0.51] II- 14				
4 [102] -5 [127], incl	0.032 [0.81]				
Over 5 [127]	0.064 [1.6]				
Copper Alloy UNS Nos. C85470, C86200, C86300, C86500, C87700, C87710,					
C87850, C89720, C95200, C95300, C95400, C95500, C95800, C95900, and					
C96400					
Up to 3 [76.2], incl	0.025 [0.64]				
Over 3 [76.2] -4 [102], incl	0.040 [1.0]				
Over 4 [102] -5½ [140], incl	0.060 [1.5]				
Over 5½ [140]	0.075 [1.9]				

^A The deviation from roundness is measured as the difference between major and minor diameters as determined at any one cross section of the tube.

- 5.1.10 When castings are purchased for agencies of the U.S. government, the Supplementary Requirements of Specification B824 may be specified.
- 5.2 The following requirements are optional and should be specified in the purchase order when required:
- 5.2.1 Chemical analysis of residual elements (Section 7 and Specification B824),
- 5.2.2 Mechanical requirements, (Section 8 Test Methods E8/E8M),
 - 5.2.3 Witness inspection (Specification B824),
 - 5.2.4 Certification (Specification B824),
 - 5.2.5 Foundry test report (Specification B824),

⁴ Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Three Park Ave., New York, NY 10016-5990, http://www.asme.org.

TABLE 8 Tolerances for Shapes

Outside Dimer	sion, ^A in. [mm]	Inside Dimens	Inside Dimension, ^B in. [mm]			
All Alloys Except as Noted Below						
Plus	Minus	Plus	Minus			
0.016 [0.41]	0.016 [0.41]	0.032 [0.81]	0.064 [1.6]			
Copper Alloy UNS	Nos. C85470, C862	00, C86300, C86500	, C87700, C87710,			

C87850, C89720, C95200, C95300, C95400, C95500, C95800, C95900, and C96400

Dimensional tolerances shall be subject to agreement between purchaser and manufacturer.

- ^A When tolerances are specified as all plus or all minus, double the values given.
- $^{\it B}$ When tolerances are specified as all plus or all minus, total the values given.
 - 5.2.6 Product marking (Specification B824),
 - 5.2.7 Castings for seawater service (Section 6), and
- 5.2.8 Approval of weld repair and records of repair (Section 11).

6. Materials and Manufacture

- 6.1 For better corrosion resistance in seawater applications, castings in Copper Alloy UNS No. C95800 shall be given a temperature anneal heat treatment at $1250 \pm 50^{\circ}$ F [675 $\pm 10^{\circ}$ C] for 6 h minimum. Cooling shall be by the fastest means possible that will not cause excessive distortion or cracking. Propeller castings shall be exempt from this requirement.
- 6.2 Copper Alloy UNS Nos. C95300, C95400, C95410, and C95500 may be supplied in the heat-treated condition to obtain the higher mechanical properties shown in Table 9. Suggested heat treatments for these alloys and Copper Alloy UNS No. C95520 are given in Table 2. Actual practice may vary by manufacturer.
- 6.3 Copper Alloy UNS No. C95520 is used only in the quench-hardened and tempered (TQ30) condition, see Table 2.
- 6.4 Copper Alloy UNS No. C96900 is normally supplied heat treated at 1520°F [825°C] for 1 h followed by a water quench, then aged at 800°F [425°C] for 4 h followed by a water quench.
- 6.5 If test bar coupons representing castings made in Copper Alloy UNS Nos. C94700HT, C95300HT, C95400HT, C95410HT, C95500HT, C95520HT, C95800 temper annealed, C95900 annealed, and C96900 are removed from the continuous castings before heat treatment, the coupons shall be heat treated with the continuous castings.

7. Chemical Composition

- 7.1 The continuous castings shall conform to the requirements for elements shown in Table 10.
- 7.2 These composition limits do not preclude the presence of other elements. By agreement between the manufacturer and purchaser, limits may be established and analysis required for unnamed elements.
- 7.3 For alloys in which copper is listed as "remainder," copper is the difference between the sum of results of all elements determined and 100 %.
- 7.4 For alloys in which zinc is listed as "remainder," either copper or zinc may be taken as the difference between the sum of results of all other elements determined and 100 %.

- 7.5 When all named elements in Table 10 with values are analyzed, their sum shall be as specified in Table 11.
- 7.6 Analysis shall be made for Other Elements only when specified in the purchase order, and shall be considered outside the limits specified in Table 11.

8. Mechanical Property Requirements

- 8.1 Reference should be made to Table 9 for minimum mechanical requirements.
- 8.2 Mechanical tests are required only when specified by the purchaser in the purchase order.
- 8.3 Exceptions to mechanical property requirements may be taken in the case of small diameter solids or castings having section thicknesses less than the ½-in. [12.7-mm] diameter of the standard tension test specimen. In these cases, mechanical property requirements shall be subject to agreement between the purchaser and the manufacturer. For suggested dimensions of substandard test bars, see Test Methods E8/E8M.

9. ASME Requirements

- 9.1 When specified in the purchase order to meet *ASME Boiler and Pressure Vessel Code* requirements, continuous castings shall comply with the following:
 - 9.1.1 Certification requirements of Specification B824.
- 9.1.2 Foundry test report requirements of Specification R824
- 9.1.3 Continuous castings shall be marked with the manufacturer's name, the Copper Alloy UNS No., and the casting quality factor. In addition, heat numbers, or serial numbers that are traceable to heat numbers, shall be marked on all pressure-containing castings individually weighing 50 lb [22.7 kg] or more. Pressure-containing castings weighing less than 50 lb [22.7 kg] shall be marked with either the heat number or a serial number that will identify the casting as to the month in which it was poured. Marking shall be in such a position as not to injure the usefulness of the casting.
- 9.1.4 When Copper Alloy UNS No. C95200 is specified to meet *ASME Boiler and Pressure Vessel Code* requirements, a sample from each 2000-lb interval or continuous casting shall be tested. Each continuous casting from which the test bar was taken shall be identified should retesting be required. If all of the test bars from the initial sampling meet the requirements, the lot shall be acceptable. The fractured bars shall be retained for chemical verification.

10. Dimensions and Permissible Variations

- 10.1 Allowance for finishing over maximum outside dimension and under inside dimension of round tubes to be machined shall be as shown in Table 3. Allowances for finishing the outside diameter of rounds and distance between parallel surfaces of bars to be machined shall be as shown in Table 4. Table 3 and Table 4 are to be used in conjunction with Tolerance Table 6 and Table 5, respectively.
 - 10.2 Concentricity:
- 10.2.1 All Alloys Except as Noted in 10.2.2—The outside periphery of continuously cast tubing shall be concentric with the bore within a permissible variation of 2 % of the nominal