International Standard

3489

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION●МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ●ORGANISATION INTERNATIONALE DE NORMALISATION

Wrought copper and copper alloys — Drawn round bars — All minus tolerances on diameter and form tolerances

Cuivre et alliages de cuivre corroyés — Barres étirées de section circulaire — Tolérances en moins sur diamètres et tolérances de forme

First edition – 1984-12-bTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3489:1984 https://standards.iteh.ai/catalog/standards/sist/84db307a-b387-4999-8772-cfbb5d9b8e78/iso-3489-1984

UDC 669.3-422.1:669.124

Ref. No. ISO 3489-1984 (E)

Descriptors: copper, copper alloys, drawn products, metal bars, round bars, dimensions, dimensional tolerances, form tolerances.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting.

International Standard ISO 3489 was prepared by Technical Committee ISO/TC 26, Copper and copper alloys. (standards.iteh.ai)

ISO 3489:1984 https://standards.iteh.ai/catalog/standards/sist/84db307a-b387-4999-8772-cfbb5d9b8e78/iso-3489-1984

Wrought copper and copper alloys — Drawn round bars — All minus tolerances on diameter and form tolerances

1 Scope and field of application

This International Standard specifies the all minus tolerances on diameter in the range from 2 up to and including 80 mm and the form tolerances for wrought copper and copper alloy drawn round bars.

2 Reference

ISO 1637, Wrought copper and copper alloys — Solid products supplied in straight lengths — Mechanical properties.*

3) Tolerances up to and including 30 mm: h12; over 30 up to and including 80 mm: h13.

All tolerances rounded off to 2 decimals.

4.2 Circularity

teh.ai

The deviation from circularity shall not exceed half the tolerance on diameter specified in table 1.

4.3 Straightness tolerances

4.3.1 Straightness tolerances apply for drawn bars with diameter equal to or greater than 10 mm for all tempers, except the annealed.

Definition iTeh STANDARI

For the purposes of this International Standard, the following definition applies.

Straightness tolerances for copper and copper alloy bars, except freemachining materials are given in table 2.

circularity: The difference the tween a the itemaximum and dards/sist/84db307a Table 2 Straightness tolerances minimum diameters measured on one cross-section bb5d9b8e78/iso-3489-1984 (excluding free machining materials)

4 Dimensions and tolerances

4.1 Diameter

Table 1 - Tolerances on diameter

Values in millimetres

Diameter		Tolerance		
>	<	Material group I ¹⁾	Material group II ²⁾	Material group III ³⁾
≥ 2	3	-0,04	-0,06	-0,10
3	6	- 0,05	-0,08	- 0,12
6	10	- 0,06	-0,09	- 0,15
10	18	- 0,07	-0,11	- 0,18
18	. 30	- 0,08	-0,13	- 0,21
30	50	0,16	- 0,25	-0,39
50	80	- 0,19	-0,30	- 0,46

Tolerances up to and including 30 mm: h10; over 30 up to and including 80 mm: h11;

Tolerances up to and including 30 mm: h11; over 30 up to and including 80 mm: h12;

Nominal length I _{nom}		Maximum curvature (depth of arc)	
>	<		
> 1 000	2 000	2,0 in any length $l_{\rm m}=1000$	
2 000	3 000	5,5 in any length $l_{\rm m}=2000$	
3 000	_	12,0 in any length $l_{\rm m} = 3000$	
Local kinks		0,6 in any length $l_{\rm m}=300$	

Straightness tolerances for freemachining materials (listed in table 6, material group I) are given in table 3.

Table 3 — Straightness tolerances for freemachining materials

Values in millimetres

Values in millimetres

Nominal length / _{nom}		Maximum curvature (depth of arc)	
>	<	(2000)	
≥ 1 000	2 000	1,0 in any length $l_{\rm m} = 1000$	
2 000	3 000	3,0 in any length $l_{\rm m} = 2000$	
3 000	_	7,0 in any length $l_{\rm m}=3000$	
Local kinks		0,4 in any length $l_{\rm m} = 300$	

^{*} Under revision.

4.3.2 The straightness is measured by determining the curvature "c" against a straightedge, having the appropriate length $l_{\rm m}$, when the bar is lying flat on a base plate, (see the figure).

4.4 Length tolerances

4.4.1 Length as manufactured

For length as manufactured, the tolerances in table 4 apply; permissible underlengths are listed in table 5.

4.4.2 Fixed length

The length of fixed lengths shall be agreed upon between the purchaser and supplier. Fixed lengths have a tolerance of $^{+}$ $^{10}_{0}$ mm.

Table 4 — Tolerances on length as manufactured

Values in millimetres

			V 414 400 111 11111111111111111111111111
Diameter		Nominal	Tolerance
>	<	length	Tolerance
< 1	3	max. 3 000	± 50
3	25	3 000 to 4 000	
25	40		± 100
40	50	2 000 to 4 000	
50	60	2 000 to 3 000	± 200
60	80	1 000 to 2 000	

Table 5 — Permissible underlengths

Diam m	-	Shortest permissible length as % of nominal length	Permissible mass of underlengths as % of lot mass
≥ 1	25	75	20
25	50	50	40
50	80	30	50

iTeh STANDARD PREVIEW (standards.iteh.ai)

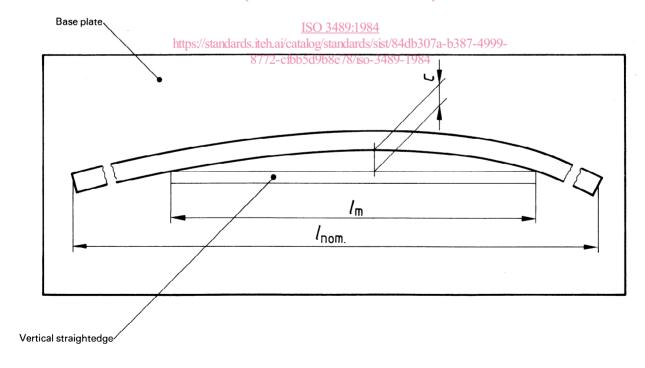


Figure - Measurement of straightness

5 Materials

Drawn round bars according to this International Standard are currently available in commercial quantities in wrought copper and copper alloys listed in table 6.

The mechanical properties of the materials listed are specified in ISO 1637.

The materials are divided into material groups I, II and III as classified in table 6.

Table 6 - Materials

ſ	Material group	Туре	Designation
		Coppers (Cu min. 99,85 %)	Cu-ETP Cu-FRHC Cu-FRTP Cu-OF Cu-HCP Cu-DLP Cu-DHP
		Copper-zinc alloys	CuZn37 CuZn40
	Teh S		CuAg 0,05 CuAg 0,1 CuAg 0,05 (OF) CuAg 0,1 (OF) CuAg 0,05 (P) CuAg 0,1 (P) CuCd 1 F
		standards.iteh.a	CuTe (P)
httj	ps://standard	ISO 3489:1984 s.iteh.ai/catalog/standards/sist/84db: 8772-cfhb5d9chead alloys 3489-19	ୁଦuZn39Pb1 ପ୍ରି
			CuZn38Pb2
ſ		Coppers (Cu min. 97,5%)	CuCr 1 CuCr1Zr
		Special copper-zinc alloys	CuZn37Sn1Pb1 CuZn38Sn1 CuZn39AlFeMn
	II	Copper-tin alloys	CuSn5 CuSn6 CuSn8
1		Copper-nickel alloys	CuNi30Mn1Fe
		Copper-nickel-zinc alloys	CuNi18Zn19Pb1 CuNi10Zn28Pb1
		Copper-aluminium alloys	CuAI7Si2 CuAI8Fe3 CuAI9Mn2 CuAI10Fe3 CuAI10Ni5Fe4
	Ш	Special copper alloys	CuBe2 CuBe2Pb CuCo2Be CuNi2Be CuNi1Si CuNi2Si CuSi1 CuSi3Mn1

iTeh This page intentionally left blank VIEW (standards.iteh.ai)

ISO 3489:1984

https://standards.iteh.ai/catalog/standards/sist/84db307a-b387-4999-8772-cfbb5d9b8e78/iso-3489-1984

iTeh This page intentionally left blank VIEW (standards.iteh.ai)

ISO 3489:1984

https://standards.iteh.ai/catalog/standards/sist/84db307a-b387-4999-8772-cfbb5d9b8e78/iso-3489-1984

iTeh This page intentionally left blank VIEW (standards.iteh.ai)

ISO 3489:1984

https://standards.iteh.ai/catalog/standards/sist/84db307a-b387-4999-8772-cfbb5d9b8e78/iso-3489-1984