INTERNATIONAL ORGANIZATION FOR STANDARDIZATION-MEЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ-ORGANISATION INTERNATIONALE DE NORMALISATION

Statistical interpretation of data — Power of tests relating to means and variances

Interprétation statistique des données — Efficacité des tests portant sur des moyennes et des variances

iTeh STANDARD PREVIEW (standards.iteh.ai)

First edition - 1976-12-01

ISO 3494:1976 https://standards.iteh.ai/catalog/standards/sist/11abeedd-250b-4ad7-9b64-d26fba335528/iso-3494-1976

Ref. No. ISO 3494-1976 (E)

UDC 519.28

Descriptors: statistics, data, mean, variance (statistics), tests, statistical tests, efficiency, effectivness.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 3494 ISO/TC 69, Applications of statistical methods, and was circulated to the Member Bodies in March 1975.

It has been approved by the Member Bodies of the following countries 276

https://standards.iteh.ai/catalog/standards/sist/11abeedd-250b-4ad7-9b64-Hungary d26fba3S99tb.Astricap.Rep.78f

Australia

India

Austria Belgium

Israel

Switzerland Turkey

Brazil

Mexico

United Kingdom

Bulgaria Canada

Netherlands New Zealand U.S.A. U.S.S.R.

Czechoslovakia

Poland Portugal Yugoslavia

France Germany

Romania

The Member Bodies of the following countries expressed disapproval of the document on technical grounds:

> Japan Sweden

ONTEN	ITS															Pag
ECTION	NONE : COMPARISON TEST	TS														
- Gener	ral remarks											•				1
- Histor	rical note									٠		ē	 ÷			2
	MEANS															
Clause	Comparison tests h	Variance(s)	Reference to table of ISO 2854	PF iteh.	REV ai)	VI	EV	V								
1	Comparison of a mean with a given value	known _T	∩ 3494·10	76									 •			3
2	Comparison of a mean with s.ite a given value	n.ai/catalog/ unknown d2010a3.	standards/s 5528/iso-3	<u>70</u> st/11abeo 494-197	edd-2:	50b-	4ad7	-9b6	4-						•	4
3	Comparison of two means	known	С			•										6
4	Comparison of two means	unknown	C'										 ٠		٠	8
	VARIANCES															
Clause	Comparison tests		Reference to table of ISO 2854													
5	Comparison of a variance with a value	given	E								·		 			10
6	Comparison of two variances		G										 	÷		1 1
	N TWO : SETS OF CURVES rences of the sets of curves .												 			1

iTeh STANDARD PREVIEW

Standards iteh gi This page intentionally left blank

ISO 3494:1976 https://standards.iteh.ai/catalog/standards/sist/11abeedd-250b-4ad7-9b64-d26fba335528/iso-3494-1976

Statistical interpretation of data — Power of tests relating to means and variances

SECTION ONE: COMPARISON TESTS

GENERAL REMARKS

1) This International Standard follows on from ISO 2854, Statistical interpretation of data - Techniques of estimation and tests relating to means and variances.

The conditions of application of this International Standard are as stated in the "General remarks" in ISO 2854. It will be recalled that the tests used are valid if the distribution of the observed variable is assumed to be normal in each population (see comments on paragraph 3 of the "General remarks" in ISO 2854). ISO 2854 is concerned only with the type I risk (or significance level). This International CS Standard puts forward notions of the type II risk and of power of the test.

2) It will also be recalled https://www.thelatypich.also.thendards.ssillabecad-250b-4ad/-9bo4probability of rejecting the null hypothesis 6 testes 28/iso-3494-sets 61.1 to 14.1, giving the risk β as a function of the hypothesis) if this hypothesis is true (case of two-sided tests), or the maximum value of this probability (case of one-sided tests). The non-rejection of the null hypothesis produces, in practice, acceptance of the hypothesis, yet non-rejection does not mean that the hypothesis is true.

Accordingly, the type II risk, designated by β , is the probability of not rejecting the null hypothesis when it is false. The complement of the probability of committing the error of the second kind $(1-\beta)$ is the "power" of the test (see "Historical note" following these general remarks).

- 3) Whereas the value of the type I risk is chosen by the consumers according to the consequences that could arise from that risk (either of the values $\alpha = 0.05$ or $\alpha = 0.01$ is commonly employed), the type II risk is dependent on the true hypothesis (the null hypothesis H_0 being false), i.e. the alternative hypothesis to the null hypothesis. In the comparison of a population mean with a given value m_0 , for example, a specific alternative corresponds to a value of the population mean of $m \neq m_0$ being a deviation $m - m_0 \neq 0$. As a general rule, in tests of comparison of means and variances, the alternatives are defined by the values that might be assumed by a parameter.
- 4) The operating characteristic curve of a test is the curve which shows the value β of the type II risk as a function of the parameter defining the alternative. β is also dependent on the value chosen for the type I risk, on size(s) of sample(s) and on the nature of the test (two-sided or one-sided).

In the tests of comparison of means, β also depends on the standard deviation of the population(s). Where this is unknown, the risk β cannot be known exactly.

- 5) The operating characteristic curves allow the following problems to be solved.
 - a) problem 1: For a given alternative and given size of sample, determine the probability β of not rejecting the null hypothesis (type II risk).
 - b) problem 2: For a given alternative and a given value of β determine the size of sample to be selected.

Although a single series of curve sets allows both problems ISO 3494:19-be solved, two series of sets will be presented, in order to

- alternative, for $\alpha = 0.05$ or $\alpha = 0.01$ and for different values of the size(s) of sample.
 - sets 1.2 to 14.2, giving the size(s) of sample to be selected as a function of the alternative, for $\alpha = 0.05$ or α – 0,01 and for different values of the risk β .
- 6) Attention is drawn to the practical significance of interpreting statistics by means of tests of hypotheses and curves. When testing a hypothesis such as $m = m_0$ (or $m_1 = m_2$), it is generally desired to know whether it can be concluded with little risk of mistake, that m does not differ too greatly from m_0 (or m_1 does not differ too greatly from m_2). Moreover, the choice of the value $\alpha = 0.05$ or $\alpha = 0.01$ for the type I risk associated with the test has a degree of arbitrariness. Therefore, it may be useful to examine what the result of the test would be with values close to m_0 (or value of the difference $D = m_1 - m_2$ close to 0), possibly using both values of the type I risk lpha=0.05and $\alpha = 0.01$ and, in these circumstances, to evaluate by means of the operating characteristic curves the risk etaassociated with different alternatives.
- 7) The sets of curves which are given in section two of this International Standard are described and discussed in six clauses which correspond to the tables in ISO 2854.

The detailed correspondence between the different sets, the problems which they allow to be solved, the clauses of this International Standard and the tables of ISO 2854, appear at the top of the group of sets.

HISTORICAL NOTE

The concepts "type I risk" and "type II risk" were introduced by J. Neyman and E. S. Pearson in an article which appeared in 1928. Subsequently, these authors considered that the complement of the probability of committing the error of the second kind — which they called "power" of the test, in its aptitude to reveal as significant a specified alternative to the null hypothesis (tested hypothesis) — was in general an easier concept for the users to understand. It is this "power", or the probability of revealing a given deviation from the null hypothesis, which they designated by the symbol β .

It is moreover not necessary to introduce the term "power". One can more simply speak of the probability that a statistical test applied to a sample, at a significance level α , reveals that a parameter λ of the population differs

(when such is truly the case) by at least a given quantity from the specified value λ_0 , or, in relation to it, in a ratio at least equal to a given number.

The change in notation was probably introduced in the United States by users of industrial applications of statistics, in order that the "consumer's risk", when designated by β , might be taken into consideration at the same time as the "producer's risk α ".

The symbol β was adopted for the type II risk in ISO 3534, Statistics - Vocabulary and symbols, and it has therefore been adopted with the same significance in this International Standard. However, as this symbol is used, and will continue no doubt to be used, with both meanings in statistical literature, it is advisable to find out, in each case of use, the meaning which is effectively attributed to it

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3494:1976 https://standards.iteh.ai/catalog/standards/sist/11abeedd-250b-4ad7-9b64-d26fba335528/iso-3494-1976

1 COMPARISON OF A MEAN WITH A GIVEN VALUE (VARIANCE KNOWN)

See table A of ISO 2854.

1.1 Notations

n = sample size

m = population mean

 $m_0 = \text{given value}$

 $\sigma = \text{standard deviation for the population}$

1.2 Tested hypotheses

For a two-sided test, the null hypothesis is $m-m_0$, the alternative hypothesis corresponding to $m \neq m_0$.

For a one-sided test, the null hypothesis is

- a) either $m \le m_0$, the alternative hypothesis corresponding to $m > m_0$;
- b) or $m \ge m_0$, the alternative hypothesis corresponding to $m < m_0$.

1.3 Problem 1 : n being given, determine the risk β

For the different values of m, the alternative is defined by $4:1970 \approx m_0 = 2.30$, the value chosen for the type I ris the parameter λ ($0 < \lambda < \infty$) with dards itch ai catalog/standards/sist $\frac{1}{1}$ above $\frac{1}{1}$ above $\frac{1}{1}$ and $\frac{1}{1}$ above $\frac{1}{1}$ and $\frac{1}{1}$ above $\frac{1}{1}$ and $\frac{1}{1}$ are the "producer's risk").

a)
$$\lambda = \frac{\sqrt{n} |m - m_0|}{\sigma}$$
 (two-sided test) alternatives $m \neq m_0$

b)
$$\lambda = \frac{\sqrt{n} (m - m_0)}{\sigma}$$
 (one-sided test $m \le m_0$) alternatives $m > m_0$

c)
$$\lambda = \frac{-\sqrt{n} (m - m_0)}{\sigma}$$
 (one-sided test $m \ge m_0$) alternatives $m < m_0$

According to the case, the set to be consulted is

- 1.1 (two-sided test) type I risk $\alpha = 0.05$
- 2.1 (two-sided test) type I risk $\alpha = 0.01$
- 3.1 (one-sided test) type I risk $\alpha = 0.05$
- 4.1 (one-sided test) type I risk $\alpha = 0.01$

 β is the ordinate of the point of the abscissa λ on the curve $\nu=\infty$ of the suitable test.

1.4 Problem 2 : β being given, determine the size n

For the different values of m, the alternative is defined by the parameter λ (0 $< \lambda < \infty$), with

a)
$$\lambda = \frac{|m - m_0|}{\sigma}$$
 (two-sided test) alternatives $m \neq m_0$

b) $\lambda = \frac{m - m_0}{\sigma}$ (one-sided test $m \le m_0$) alternatives $m > m_0$

c)
$$\lambda = -\frac{m - m_0}{\sigma}$$
 (one-sided test $m \ge m_0$) alternatives $m \le m_0$

According to the case, the set to be consulted is

- 1.2 (two-sided test) type I risk $\alpha = 0.05$
- 2.2 (two-sided test) type I risk $\alpha = 0.01$
- 3.2 (one-sided test) type I risk $\alpha = 0.05$
- 4.2 (one-sided test) type I risk $\alpha = 0.01$

n is the ordinate of the point on the abscissa λ on the straight line (broken line) which corresponds to the given value β .

1.5 Example

A producer of cotton yarn guarantees, for each of the batches he delivers, a mean breaking load (expressed in newtons) at least equal to $m_0 = 2,30$. The consumer only agrees to accept the batches after having verified on elements of yarn of a given length, taken from different bobbins, that the one-sided test, as described in ISO 2854, does not lead to a rejection of the hypothesis $m \ge m_0 = 2,30$, the value chosen for the type I risk being $\alpha = 0.05$ (α is therefore here the "producer's risk").

d26fba335528/iso-347he 96nsumer knows from experience that the mean of alternatives the different batches may vary, but the dispersion of the breaking loads within any one batch is practically constant with a standard deviation $\sigma=0.33$.

1.5.1 The consumer envisages selecting n = 10 bobbins per batch, and wishes to know the probability that he will not reject the hypothesis $m \ge 2,30$ (hence to accept the batch) where in fact the mean breaking load would be m = 2,10.

The set to be consulted is set 3.1. The value of the parameter λ for m=2,10 is

$$\lambda = \frac{-\sqrt{n} (m - m_0)}{\sigma} = \frac{\sqrt{10} (2,30 - 2,10)}{0.33} = 1,92$$

The straight line $\nu=\infty$ gives for $100\,\beta$ the value $36:\beta=0.36$ or 36%.

1.5.2 This value being considered by the consumer as much too high, he decides to select a sample of sufficient size for the risk β to be reduced to 0,10 (or 10 %) if m = 2,10.

The set to be consulted is set 3.2. The value of the parameter λ for m=2,10 is

$$\lambda = -\frac{m - m_0}{a} = \frac{2,30 - 2,10}{0.33} = 0,61$$

The value of n, read on the straight lines (broken) $\beta = 0.10$ is n = 22.

2 COMPARISON OF A MEAN WITH A GIVEN VALUE (VARIANCE UNKNOWN)

See table A' of ISO 2854.

IMPORTANT NOTE

The type II risk β depends on the true value σ of the standard deviation for the population, which is unknown. Hence, β can only be known approximately, and this provided that an order of magnitude of σ is available. In the absence of any valid previous information, one will take for σ the estimation s obtained from the sample.

It is strongly recommended that the influence on the values read from the operating characteristic curve of an error made for the standard deviation σ should be considered. The inaccuracy can be very great where σ has been estimated from a sample of small size: allowance for this situation can be made by placing s within the confidence limits for σ calculated by the method in table F of ISO 2854.

2.1 Notations

= sample size

m = population mean

 m_0 — given value

replaced by an approximate value)

2.2 Tested hypotheses

 $\nu = n - 1$

For a two-sided test, the null hypothesis is $m = m_0$, the alternative hypotheses corresponding to $m \neq m_0$.

For a one-sided test, the null hypothesis is

- a) either $m \leq m_0$, the alternative hypotheses corresponding to $m > m_0$;
- b) or $m \ge m_0$, the alternative hypotheses corresponding to $m < m_0$.

2.3 Problem 1 : n being given, determine the risk β

For the different values of m, the alternative is defined by the parameter λ (0 < λ < ∞), with

a)
$$\lambda = \frac{\sqrt{n} |m - m_0|}{\sigma}$$
 (two-sided test) alternatives $m \neq m_0$

b)
$$\lambda = \frac{\sqrt{n} (m - m_0)}{\sigma}$$
 (one-sided test $m \le m_0$) alternatives $m > m_0$

c)
$$\lambda = -\frac{\sqrt{n} (m - m_0)}{\sigma}$$
 (one-sided test $m \ge m_0$) alternatives $m \le m_0$

According to the case, the set to be consulted is

- 1.1 (two-sided test) type I risk $\alpha = 0.05$
- 2.1 (two-sided test) type I risk $\alpha = 0.01$
- 3.1 (one-sided test) type I risk $\alpha = 0.05$
- 4.1 (one-sided test) type I risk $\alpha = 0.01$

 β is the ordinate of the point on the abscissa λ on the curve v = n - 1 of the suitable set.

2.4 Problem 2 : β being given, determine the size n

For the different values of m, the alternative is defined by the parameter λ (0 < λ < ∞), with

a)
$$\lambda = \frac{|m - m_0|}{\sigma}$$
 (two-sided test) alternatives $m \neq m_0$

b)
$$\lambda = \frac{m - m_0}{\sigma}$$
 (one-sided test $m \le m_0$) alternatives $m > m_0$

c)
$$\lambda = -\frac{m - m_0}{\sigma}$$
 (one-sided test $m \geqslant m_0$) alternatives

iTeh STANDARD REVIEW
According to the case, the set to be consulted is

(standards-it@hwasided test) type I risk $\alpha = 0.05$

 σ = standard deviation for the population (which will be -2.2 (two-sided test) type I risk $\alpha = 0.01$ replaced by an approximate value)

https://standards.iteh.ai/catalog/standards/sisi $\frac{3}{2}$ a/one side of itest https://standards/sisi $\frac{3}{2}$ a/one side of itest https://standards/sisia/one side of it

d26fba335528/iso-3494.21(one-sided test) type I risk $\alpha=$ 0,01

n is the ordinate of the point of the abscissa λ on the curve which corresponds to the given value β .

2.5 Example

The example is the same as in 1.5, but the consumer does not know the exact value of the standard deviation of the breaking loads. He knows, however, from experience, that this is almost certainly within the limits

$$\sigma_1 = 0.30$$
 $\sigma_S = 0.45$

2.5.1 The consumer envisages selecting n = 10 bobbins per batch, and wishes to know the probability that he will not reject the hypothesis $m \ge 2,30$ (hence to accept the batch), while in fact the mean breaking load would be m = 2.10.1

The set to be consulted is set 3.1. The values of the parameter λ which correspond to the extreme values of σ

$$\lambda_{\rm I} = \frac{\sqrt{10} (2,30-2,10)}{0.30} = 2,1$$

$$\lambda_{S} = \frac{\sqrt{10} (2,30-2,10)}{0.45} = 1,4$$

¹⁾ That is, the probability that when using the Student test with the significance level $\alpha = 0.05$, the value m = 2.10 is not revealed to be significantly lower than $m_0 = 2,30$.

The corresponding values of 100 β read (by interpolation) $\nu=9$ are 40 and 64; i.e.

$$\beta_1 = 0.40$$
 (or 40 %)

$$\beta_{\rm S} = 0.64 \text{ (or 64 \%)}$$

2.5.2 The consumer wishes, in the most unfavourable hypothesis ($\sigma = \sigma_{\rm S} = 0.45$), β not to exceed 0.10 (or 10 %) if m = 2.10.

The set to be consulted is set 3.2, curve $\beta = 0.10$, with

$$\lambda = \frac{2,30 - 2,10}{0,45} = 0,44$$

For $\beta = 0.10$ and $\lambda = 0.44$, one finds n in the order of 45.

If, after inspection of several batches, it is found that the standard deviation is stable, σ can be estimated with greater precision: the sample size to be taken from the following batches can probably be reduced, with the guarantees of the producer and the consumer being maintained.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3494:1976 https://standards.iteh.ai/catalog/standards/sist/11abeedd-250b-4ad7-9b64-d26fba335528/iso-3494-1976

3 COMPARISON OF TWO MEANS (VARIANCES KNOWN)

See table C of ISO 2854.

3.1 Notations

	Population No. 1	Population No. 2			
Sample size	<i>n</i> ₁	n ₂			
Mean	m_1	m ₂			
Variance	σ <mark>2</mark> 1	σ ² ₂			
Standard deviation of the difference of the mean of the two samples	$\sigma_{\mathbf{d}} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$				

When the total size of the two samples is fixed, $n_1 + n_2 = 2 n$, the best efficiency (β minimum) is obtained with:

$$\frac{n_1}{\sigma_1} = \frac{n_2}{\sigma_2}$$

hence

$$n_1 = 2 n \frac{\sigma_1}{\sigma_1 + \sigma_2}$$

$$n_2 = 2 n \frac{\sigma_2}{\sigma_1 + \sigma_2}$$

$$\lambda = \sqrt{2 n \frac{|m_1 - m_2|}{\sigma_1 + \sigma_2}}$$

$$\left(\lambda = \sqrt{\frac{n}{2}} \frac{|m_1 - m_2|}{\sigma}, \text{ if } \sigma_1 = \sigma_2 = \sigma\right)$$

3.2 Tested hypotheses

corresponding to $m_1 < m_2$.

For a two-sided test, the null hypothesis is $m_1 \neq m_2$, the DARD PREVIEW alternative hypotheses corresponding to $m_1 \neq m_2$.

3.4 Problem 2: β being given, determine the sizes n_1 and For a one-sided test, the null hypothesis is $(standam_2 s.tten.at)$

- a) either $m_1 \le m_2$, the corresponding to $m_1 > m_2$; hypotheses
- b) or $m_1 \geqslant m_2$, the alternative

Using, according to the case, set 1.1, 2.1, 3.1 or 4.1, the 1803curve 976∞ allows the problem to be solved in the general https://standards.iteh.ai/catalog/standards/sikheladrdidate5\beardesponds to the point on the hypotheses 33552 abscissa λ of this curve, and any pair (n_1, n_2) is suitable on

the condition that

$$\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} - \left(\frac{m_1 - m_2}{\lambda}\right)^2$$

The most economical sample $(n_1 + n_2 \text{ minimum})$ is such

$$\frac{n_1}{\sigma_1} = \frac{n_2}{\sigma_2}$$

hence

$$n_1 = \sigma_1 (\sigma_1 + \sigma_2) \left(\frac{\lambda}{m_1 - m_2} \right)^2$$

$$n_2 = \sigma_2 (\sigma_1 + \sigma_2) \left(\frac{\lambda}{m_1 - m_2} \right)^2$$

$$\left(n_1 = n_2 = 2\left(\frac{\lambda\sigma}{m_1 - m_2}\right)^2, \text{ if } \sigma_1 = \sigma_2 = \sigma\right)$$

In the particular case where $\sigma_1 = \sigma_2 = \sigma$, $n_1 = n_2 = n$, it is more suitable to define, for the different values of the difference $m_1 - m_2$, the alternative by the parameter λ (0 < λ < ∞), with

a)
$$\lambda = \frac{|m_1 - m_2|}{\sigma \sqrt{2}}$$
 (two-sided test) alternatives $m_1 \neq m_2$

3.3 Problem 1: n_1 and n_2 being given, determine the risk β

For the different values of the difference $m_1 - m_2$, the alternative is defined by the parameter λ (0 < λ < ∞), with

a)
$$\lambda = \frac{|m_1 - m_2|}{\sigma_d}$$
 (two-sided test) alternatives $m_1 \neq m_2$

b)
$$\lambda = \frac{m_1 - m_2}{\sigma_d}$$
 (one-sided test $m_1 \le m_2$) alternatives $m_1 > m_2$

c)
$$\lambda = \frac{m_2 - m_1}{\sigma_d}$$
 (one-sided test $m_1 \geqslant m_2$) alternatives $m_1 < m_2$

According to the case, the set to be consulted is

$$-$$
 1.1 (two-sided test) type I risk $\alpha=0.05$

$$-$$
 2.1 (two-sided test) type I risk $\alpha = 0.01$

$$-$$
 3.1 (one-sided test) type I risk $\alpha = 0.05$

- 4.1 (one-sided test) type I risk
$$\alpha = 0.01$$

 β is the ordinate of the point on the abscissa λ on the curve $\nu = \infty$ of the suitable set.

b)
$$\lambda = \frac{m_1 - m_2}{\sigma \sqrt{2}}$$
 (one-sided test $m_1 \le m_2$) alternatives $m_1 > m_2$

c)
$$\lambda = \frac{m_2 - m_1}{\sigma \sqrt{2}}$$
 (one-sided test $m_1 \geqslant m_2$) alternatives $m_1 < m_2$

and to use according to the case, one of the following sets:

- 1.2 (two-sided test) type I risk $\alpha = 0.05$
- 2.2 (two-sided test) type I risk $\alpha = 0.01$
- 3.2 (one-sided test) type I risk $\alpha = 0.05$
- -4.2 (one-sided test) type I risk $\alpha = 0.01$

n is the ordinate of the point on the abscissa λ on the straight line (broken line) which corresponds to the given value β .

3.5 Example

A producer of cotton yarn has modified his process, but according to his declaration, the mean breaking load remains the same $(m_1 = m_2)$, m_1 corresponding to the old process and m₂ to the new. 11eh STANDARD

The consumer is prepared to adopt the new process, but S. 13.5.2. This value being considered by the consumer as wishes to verify the declaration of the producer, by carrying out on elements of yarn of a given length taken $m_1 = m_2$ as described in 180 2854, with for the value of ds/sist 1 about 2365-4 ad - 3664 from different bobbins, the two-sided test of the hypothesis the type I risk $\alpha = 0.05$ (α is therefore here the producer siso-347the set to be consulted is set 1.2, with risk").

The consumer knows, from experience, that for all the productions of this producer, the dispersion of the breaking load is practically constant and characterized by a standard deviation $\sigma = 0.33$.

3.5.1 The consumer envisages selecting 10 bobbins from a batch of each of the two processes, and wishes to know the probability that he will not reject the hypothesis $m_1 = m_2$ (hence to accept the batch of the new process) while in fact $|m_1 - m_2|$ would be equal to 0,30.

The set to be consulted is set 1.1, with

$$\lambda = \frac{|m_1 - m_2|}{\sigma_{\mathsf{d}}}$$

$$|m_1 - m_2| = 0.30$$

$$\sigma_{\rm d} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{\frac{2}{n}} \sigma = \sqrt{\frac{2}{10}} \times 0.33 = 0.147.6$$

$$\lambda = \frac{0.30}{0.147.6} = 2.03$$

PREVIEW

The curve $\nu = \infty$ gives for 100 β the value 47 : $\beta = 0.47$ or

much too high, he decides to select samples of a sufficiently large size for the risk β to be reduced to 0,10 (or 10 %)

$$\lambda = \frac{|m_1 - m_2|}{\sigma \sqrt{2}} = \frac{0.30}{0.33\sqrt{2}} = 0.64$$

The value of n, read on the straight line (broken line) $\beta = 0.10$, is n = 26.

4 COMPARISON OF TWO MEANS (VARIANCES UNKNOWN BUT MAY BE ASSUMED EQUAL)

See table C' of ISO 2854

IMPORTANT NOTE

The type II risk β depends on the true value σ of the standard deviation of the two populations, which is unknown. Hence β can only be known approximately, and this provided that an order of magnitude of σ is available. In the absence of any valid previous information, one will take for σ the estimation s obtained from samples.

It is strongly recommended that the influence on the values read on the curves of an error made for the standard deviation σ should be considered. The inaccuracy can be very great where σ has been estimated from samples of small size; allowance for this situation can be made by placing s within the confidence limits for σ , calculated by the method in table F of ISO 2854.

4.1 Notations

	Population No. 1eh	Population No. 2
Sample size	<i>n</i> ₁	(ct ⁿ and
Mean	m_1	(stand
Variance (which will be replaced by an approximate value)	https://standard	ls.iteh.ai/catalog
Number of degrees of freedom	v n ₁ +	_
Standard deviation of the difference between the means of the two samples	$\sigma_{d} = \sqrt{\frac{2}{n}} \sigma_{1} \text{ if } n_{1}$	$\frac{\overline{n_1 + n_2}}{n_1 n_2} \sigma$ $(1 - n_2 - n)$

4.2 Tested hypotheses

For a two-sided test, the null hypothesis is $m_1 = m_2$, the alternative hypotheses corresponding to $m_1 \neq m_2$.

For a one-sided test, the null hypothesis is

- a) either $m_1 \le m_2$, the alternative hypotheses corresponding to $m_1 > m_2$;
- b) or $m_1 \geqslant m_2$, the alternative hypotheses corresponding to $m_1 < m_2$.

4.3 Problem 1 : n_1 and n_2 being given, determine the risk β

For the different values of the difference $m_1 - m_2$, the alternative is defined by the parameter λ (0 $< \lambda < \infty$), with

a)
$$\lambda = \frac{|m_1 - m_2|}{\sigma_{\rm cl}}$$
 (two-sided test) alternatives $m_1 \neq m_2$

b)
$$\lambda - \frac{m_1 - m_2}{\sigma_{\rm d}}$$
 (one-sided test $m_1 \leqslant m_2$) alternatives $m_1 > m_2$

c)
$$\lambda = \frac{m_2 - m_1}{\sigma_{\rm d}}$$
 (one-sided test $m_1 \geqslant m_2$) alternatives $m_1 < m_2$

According to the case, the set to be consulted is

- 1.1 (two-sided test) type I risk $\alpha = 0.05$
- 2.1 (two-sided test) type I risk $\alpha = 0.01$
- 3.1 (one-sided test) type I risk $\alpha = 0.05$
- 4.1 (one-sided test) type I risk $\alpha = 0.01$

 β is the ordinate of the point on the abscissa λ on the curve $\lambda=n_1+n_2-2$ of the suitable set.

When only the total size of the two samples is fixed, $n_1 + n_2 = 2 n$, it is of interest to take $n_1 = n_2 = n$ (β minimum). One then has:

$$\lambda = \sqrt{\frac{n}{2}} \frac{|m_1 - m_2|}{\sigma}$$
RD PREVIEW

arc4.4 irroblem $(21)_{\beta}$ being given, determine the common size n of the samples

so 3494 or the different values of the difference m_1 - m_2 , the standard terms tive is defined by the parameter λ (0 $< \lambda < \infty$), with 0.5528/iso-3494-1976

- a) $\lambda = \frac{|m_1 m_2|}{\sigma \sqrt{2}}$ (two-sided test) alternatives $m_1 \neq m_2$
- b) $\lambda = \frac{m_1 m_2}{\sigma \sqrt{2}}$ (one-sided test $m_1 \leqslant m_2$) alternatives $m_1 > m_2$
- c) $\lambda = \frac{m_2 m_1}{\sigma \sqrt{2}}$ (one-sided test $m_1 \ge m_2$) alternatives $m_1 < m_2$

According to the case, the set to be consulted is

- 1.2 (two-sided test) type I risk $\alpha = 0.05$
- 2.2 (two-sided test) type I risk $\alpha = 0.01$
- 3.2 (one-sided test) type I risk $\alpha = 0.05$
- 4.2 (one-sided test) type I risk $\alpha = 0.01$

n is the ordinate of the point on the abscissa λ on the curve which corresponds to the given value β .

4.5 Example

The example is the same as in 3.5, but the consumer does not know the exact value of the standard deviation of the breaking loads. He only knows that there is a great likelihood that it will be the same for the two batches $(\sigma_1 = \sigma_2)$.

4.5.1 The consumer envisages selecting 10 bobbins from a batch of each of the two processes, and wishes to know the probability that he will not reject the hypothesis $m_1 = m_2$ (hence to accept the batch of the new process), while in fact $|m_1 - m_2|$ would be equal to 0,30.1)

The measurements carried out on the two samples give the following results:

a) First batch:
$$\bar{x}_1 = 2,176$$
 $\Sigma (x_1 - \bar{x}_1)^2 = 1,256$ 3

b) Second batch:
$$\bar{x}_2 = 2,520 \quad \Sigma (x_2 - \bar{x}_2)^2 = 1,389 \ 7$$

The small difference between the two sums of the squares is perfectly compatible with the hypothesis made above that : $\sigma_1^2 = \sigma_2^2$ (see table G of ISO 2854).

The estimation of the common variance σ^2 for the two batches is

$$s^2 = \frac{1,256\ 3 + 1,389\ 7}{10 + 10 - 2} = \frac{2,646\ 0}{18} = 0,147\ 0$$

The upper limit of σ^2 , at the confidence level $1 - \alpha = 0.95$, is (see table F of ISO 2854)

$$\sigma_{\rm S}^2 = \frac{2,646.0}{\chi_{0,0.5}^2 \text{ (18)}} = \frac{2,646.0}{9,39} \text{ 0.2818} \text{ NDAI}$$

It is therefore not very probable that o will be greater than

$$\sigma_{\rm S} = \sqrt{0.2818} = 0.53$$

The set to be consulted is set 1.1, with

$$\lambda_{\rm S} = \sqrt{\frac{n}{2} \frac{|m_1 - m_2|}{\sigma_{\rm S}}} = \sqrt{\frac{10}{2} \times \frac{0,30}{0,53}} = 1,27$$

For v = 18, one finds (by interpolation) that the corresponding value of 100 β is close to 80: the upper limit of the type II risk is about 0.80 (or 80 %).

4.5.2 The consumer wishes, in the most unfavourable hypothesis ($\sigma = \sigma_S = 0.53$), β not to exceed 0.20 (or 20 %) when $|m_1 - m_2| = 0.30$.

The set to be consulted is set 1.2, curve $\beta = 0.20$, with

$$\lambda = \frac{|m_1 - m_2|}{\sigma_S \sqrt{2}} = \frac{0.30}{0.53 \sqrt{2}} = 0.4$$

For $\beta = 0.20$ and $\lambda = 0.4$, one finds n = 49.

The $2 \times 50 = 100$ measurements will permit a quite $\sigma_{\rm S}^2 = \frac{2,646.0}{\chi_{0.05}^2~(18)} = \frac{2,646.0}{9,390} = 0.281.8$ accurate estimation of 0, on the Sast S. many approximate value of the type II risk associated with the alternative $m_1 - m_2 = 0,30$. accurate estimation of σ , on the basis of which set 1.1 will

(standards.iteh.ai)

ISO 3494:1976

https://standards.iteh.ai/catalog/standards/sist/11abeedd-250b-4ad7-9b64d26fba335528/iso-3494-1976

¹⁾ That is, the probability that when using the Student test with the significance level $\alpha = 0.05$, a difference $|m_1 - m_2| = 0.30$ will not be revealed.

5 COMPARISON OF A VARIANCE OR OF A STANDARD DEVIATION WITH A GIVEN VALUE

See table E of ISO 2854.

5.1 Notations

= sample size

 σ^2 = variance of the population (σ = standard deviation of the population)

 σ_0^2 = given value for the variance (σ_0 = given value for the standard deviation)

5.2 Tested hypotheses

For a two-sided test, the null hypothesis is $\sigma^2 = \sigma_0^2$ $(\sigma = \sigma_0)$, the alternative hypotheses corresponding to $\sigma^2 \neq \sigma_0^2 \ (\sigma \neq \sigma_0)$.

For a one-sided test, the null hypothesis is

- a) either $\sigma^2 \le \sigma_0^2$ ($\sigma \le \sigma_0$), the alternative hypotheses corresponding to $\sigma^2 > \sigma_0^2$ ($\sigma > \sigma_0$); eh STANI
- b) or $\sigma^2 \geqslant \sigma_0^2$ ($\sigma \geqslant \sigma_0$), the alternative hypotheses corresponding to $\sigma^2 < \sigma_0^2$ ($\sigma < \sigma_0$).

In all cases, the alternative is defined by the parameter

 $0 < \lambda < \infty$, for the two-sided test:

 $1 < \lambda < \infty$, for the one-sided test $\sigma^2 \le \sigma_0^2$ ($\sigma \le \sigma_0$);

 $0 < \lambda < 1$ for the one-sided test $\sigma_2 \ge \sigma_0^2$ ($\sigma \ge \sigma_0$).

5.3 Problem 1 : n being given, determine the risk β

According to the case, the set to be consulted is:

- 5.1 (two-sided test) type I risk $\alpha = 0.05$
- 6.1 (two-sided test) type I risk $\alpha = 0.01$
- 7.1 (one-sided test $\sigma^2 \leq \sigma_0^2$) type I risk $\alpha = 0.05$
- 8.1 (one-sided test $\sigma^2 \le \sigma_0^2$) type I risk $\alpha = 0.01$
- 9.1 (one-sided test $\sigma^2 \ge \sigma_0^2$) type I risk $\alpha = 0.05$
- 10.1 (one-sided test $\sigma^2 \ge \sigma_0^2$) type I risk $\alpha = 0.01$

 β is the ordinate of the point on the abscissa λ on the curve (n) of the suitable set.

5.4 Problem 2 : β being given, determine the size n

According to the case, the set to be consulted is

- 5.2 (two-sided test) type I risk $\alpha = 0.05$
- 6.2 (two-sided test) type I risk $\alpha = 0.01$
- 7.2 (one-sided test $\sigma^2 \leq \sigma_0^2$) type I risk $\alpha = 0.05$
- 8.2 (one-sided test $\sigma^2 \leq \sigma_0^2$) type I risk $\alpha = 0.01$
- 9.2 (one-sided test $\sigma^2 \ge \sigma_0^2$) type I risk $\alpha = 0.05$
- 10.2 (one-sided test $\sigma^2 \ge \sigma_0^2$) type I risk $\alpha = 0.01$

n is the ordinate of the point on the abscissa λ on the curve which corresponds to the given value β .

5.5 Example

A producer of cotton yarn states that he has improved the quality of his process by a reduction in the dispersion of the breaking loads which was formerly characterised by a standard deviation $\sigma_0 = 0.45$ ($\sigma_0^2 = 0.202$ 5).

A possible consumer is prepared to pay a higher price for this improvement on condition that it really exists, but he only wishes to run a small risk of finding an improvement when there would be none. He decides to carry out a one-sided test $\sigma^2 \ge \sigma_0^2 = 0.2025$ ($\sigma \ge 0.45$), as described in 1SO 2854, taking for the type I risk the value lpha = 0.05(α is therefore here the "consumer's risk").

ISO 3494:1976

 $\lambda = \sigma/\theta ps://standards.iteh.ai/catalog/sta$ d26fba335528/ifrom 9al batch of the new process, and wishes to know the probability that he will not reject the hypothesis $\sigma \ge 0.45$ (hence not finding an improvement), while in fact the standard deviation would effectively have been reduced to the value $\sigma = 0.30$.

> The set to be consulted is set 9.1, with for the parameter λ the value

$$\lambda = \frac{\sigma}{\sigma_0} = \frac{0.30}{0.45} = 0.67$$

The curve n=12 gives for $100\,\beta$ a value about 51: $\beta = 0.51$ or 51 %.

5.5.2 The consumer recognizes that he runs a high risk of not revealing an effectively interesting improvement. He therefore decides to select a sufficiently large size of sample for the value of β to be reduced to 0,10 (or 10 %) for $\sigma = 0.30$.

The set to be consulted is set 9.2.

Where $\beta = 0.10$ and $\lambda = 0.67$, one finds n = 29.

6 COMPARISON OF TWO VARIANCES OR OF TWO STANDARD DEVIATIONS

See table G of ISO 2854.

The operating characteristic curves are only given for the particular case where the two samples are of the same size.

6.1 Notations

Variance of population No. 1 : σ_1^2 (standard deviation σ_1)

Variance of population No. 2 : σ_2^2 (standard deviation σ_2)

Size of sample No. 1: $n_1 = n$

Size of sample No. 2 : $n_2 = n$

6.2 Tested hypotheses

For a two-sided test, the null hypothesis is $\sigma_1^2 = \sigma_2^2$ $(\sigma_1 = \sigma_2)$, the alternative hypotheses corresponding to $\sigma_1^2 \neq \sigma_2^2$ ($\sigma_1 \neq \sigma_2$). These are defined by the parameter

$$\lambda = \sigma_2/\sigma_1$$
 for the alternatives $\sigma_1 < \sigma_2$

$$\lambda = \sigma_1/\sigma_2$$
 for the alternatives $\sigma_1 > \sigma_2$

For a one-sided test, the null hypothesis is

corresponding to $\sigma_1^2 > \sigma_2^2$ ($\sigma_1 > \sigma_2$) and defined by the parameter $\lambda = \sigma_1/\sigma_2$ ($1 < \lambda < \infty$);

b) or $\sigma_1^2 \geqslant \sigma_2^2$ $(\sigma_1 \geqslant \sigma_2)$, the alternative hypotheses corresponding to $\sigma_1^2 < \sigma_2^2$ $(\sigma_1 < \sigma_2)$ and defined by the parameter $\lambda = \sigma_2/\sigma_1$ $(1 < \lambda < \infty)$.

6.3 Problem 1 : n being given, determine the risk β

According to the case, the set to be consulted is

- 11.1 (two-sided test) type I risk $\alpha = 0.05$
- 12.1 (two-sided test) type I risk $\alpha = 0.01$
- 13.1 (one-sided test) type I risk $\alpha = 0.05$
- 14.1 (one-sided test) type I risk $\alpha = 0.01$

 β is the ordinate of the point on the abscissa λ on the curve (n) of the suitable set.

6.4 Problem 2 : β being given, determine the size n

According to the case, the set to be consulted is

- 11.2 (two-sided test) type I risk $\alpha = 0.05$
- 12.2 (two-sided test) type I risk $\alpha = 0.01$
- 13.2 (one-sided test) type I risk $\alpha = 0.05$
- 14.2 (one-sided test) type I risk $\alpha = 0.01$

n is the ordinate of the point on the abscissa λ on the curve which corresponds to the given value β .

6.5 Example

A producer of cotton yarn offers two batches to a possible consumer, the price of batch number one being a little higher because, he says, of a lower dispersion of the breaking loads.

The consumer is prepared to choose batch number one, on condition that the dispersion is really smaller, but he only wishes to run a small risk of finding that $\sigma_1 < \sigma_2$, while in fact one would have $\sigma_1 \geqslant \sigma_2$. He decides to carry out the one-sided test $\sigma_1^2 \geqslant \sigma^2$ ($\sigma_1 \geqslant \sigma_2$) as described in ISO 2854, taking for the type I risk the value $\alpha = 0.05$ (α is therefore here the "consumer's risk").

ards.ife. 1. The consumer envisages selecting n = 20 bobbins from each batch, and wishes to know the probability that ISO 3494:197he will not reject the hypothesis $\sigma_1 \ge \sigma_2$ (hence not to find a) either $\sigma_1^2 \le \sigma_2^2$ ($\sigma_1 \le \sigma_2^2$), the alternative hypotheses described batch number one has a smaller dispersion than batch number two) while in fact one would have $\sigma_1 = \frac{2}{3}\sigma_2$.

> The set to be consulted is set 13.1, with for the parameter λ the value

$$\lambda = \frac{\sigma_2}{\sigma_1} = 1.5$$

For n = 20, one finds (by interpolation) that the corresponding value of 100 β is close to 48 : $\beta = 0.48$ or 48 %.

6.5.2 The consumer recognizes that he runs a high risk of not revealing an effectively interesting improvement. He therefore decides to select from each batch a sufficiently large sample for the value of β to be reduced to 0,10 (or 10 %), when $\sigma_1/\sigma_2 = 2/3$.

The set to be consulted is set 13.2.

For $\beta = 0.10$ and $\lambda = 1.5$ one finds n = 55.