This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: E1304 – 97 (Reapproved 2008)^{ε1}E1304 – 97 (Reapproved 2014)

Standard Test Method for Plane-Strain (Chevron-Notch) Fracture Toughness of Metallic Materials¹

This standard is issued under the fixed designation E1304; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

 ε^1 NOTE—The term *stress-intensity factor* was editorially updated in March 2009.

1. Scope

1.1 This test method covers the determination of plane-strain (chevron-notch) fracture toughnesses, K_{Iv} or K_{IvM} , of metallic materials. Fracture toughness by this method is relative to a slowly advancing steady state crack initiated at a chevron-shaped notch, and propagating in a chevron-shaped ligament (Fig. 1). Some metallic materials, when tested by this method, exhibit a sporadic crack growth in which the crack front remains nearly stationary until a critical load is reached. The crack then becomes unstable and suddenly advances at high speed to the next arrest point. For these materials, this test method covers the determination of the plane-strain fracture toughness, K_{Ivj} or K_{IvM} , relative to the crack at the points of instability.

NOTE 1—One difference between this test method and Test Method E399 (which measures K_{Ic}) is that Test Method E399 centers attention on the start of crack extension from a fatigue precrack. This test method makes use of either a steady state slowly propagating crack, or a crack at the initiation of a crack jump. Although both methods are based on the principles of linear elastic fracture mechanics, this difference, plus other differences in test procedure, may cause the values from this test method to be larger than K_{Ic} values in some materials. Therefore, toughness values determined by this test method cannot be used interchangeably with K_{Ic} .

1.2 This test method uses either chevron-notched rod specimens of circular cross section, or chevron-notched bar specimens of square or rectangular cross section (Figs. 1-10). The terms "short rod" and "short bar" are used commonly for these types of chevron-notched specimens.

1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

https://standards.iteh.a/catalog/standards/sist/f2ded3df-0be7-4609-ae6a-a9300f241e5e/astm-e1304-972014 2. Referenced Documents

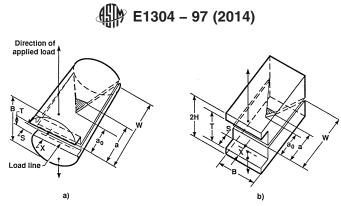
2.1 ASTM Standards:²
E4 Practices for Force Verification of Testing Machines
E8/E8M Test Methods for Tension Testing of Metallic Materials
E399 Test Method for Linear-Elastic Plane-Strain Fracture Toughness K_{Ic} of Metallic Materials
E1823 Terminology Relating to Fatigue and Fracture Testing

3. Terminology

3.1 Definitions:

3.1.1 The terms described in Terminology E1823 are applicable to this test method.

3.1.2 stress-intensity factor, K_I [FL^{-3/2}]—the magnitude of the mathematically ideal crack-tip stress field (stress-field singularity) for mode I in a homogeneous linear-elastic body.


3.1.2.1 Discussion—

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

¹ This test method is under the jurisdiction of ASTM Committee E08 on Fatigue and Fracture and is the direct responsibility of Subcommittee E08.02 on Standards and Terminology.

Current edition approved Nov. 1, 2008July 1, 2014. Published February 2009September 2014. Originally approved in 1989. Last previous edition approved in $\frac{20022009}{10.1520/E1304-97R08E01}$ as E1304 – $97(\frac{2002}{2009})$. DOI: $\frac{10.1520/E1304-97R08E01}{10.1520/E1304-97R14}$.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

NOTE 1-The crack commences at the tip of the chevron-shaped ligament and propagates (shaded area) along the ligament, and has the length "a" shown. (Not to scale.)

Values of *K* for mode *I* are given by the following equation:

$$K_{I} = \text{limit } \sigma_{y} \left[2\pi r_{x} \right]^{\frac{1}{2}}$$
$$r_{x} \rightarrow 0$$

where:

 r_x = distance from the crack tip to a location where the stress is calculated and

 σ_v = the principal stress r_x normal to the crack plane.

3.2 Definitions of Terms Specific to This Standard:

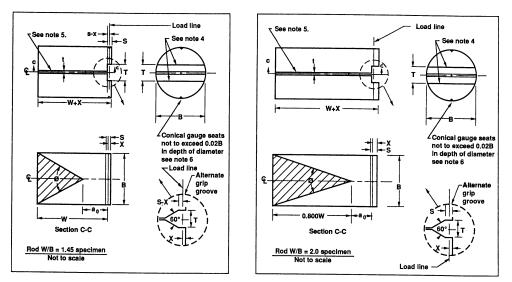
3.2.1 plane-strain (chevron-notch) fracture toughness, K_{Iv} or K_{Ivj} [FL^{-3/2}]—under conditions of crack-tip plane strain in a chevron-notched specimen: K_{Iv} relates to extension resistance with respect to a slowly advancing steady-state crack. K_{Ivj} relates to crack extension resistance with respect to a crack which advances sporadically.

For slow rates of loading the fracture toughness, $K_{I\nu}$ or $K_{I\nu j}$, is the value of stress-intensity factor as measured using the operational procedure (and satisfying all of the validity requirements) specified in this test method.

3.2.2 plane-strain (chevron-notch) fracture toughness, K_{IvM} [FL^{-3/2}]—determined similarly to K_{Iv} or K_{Ivj} (see 3.2.1) using the same specimen, or specimen geometries, but using a simpler analysis based on the maximum test force. The analysis is described in Annex A1. Unloading-reloading cycles as described in 3.2.6 are not required in a test to determine K_{IvM} .

3.2.3 *smooth crack growth behavior*—generally, that type of crack extension behavior in chevron-notch specimens that is characterized primarily by slow, continuously advancing crack growth, and a relatively smooth force displacement record (Fig. 4). However, any test behavior not satisfying the conditions for crack jump behavior is automatically characterized as smooth crack growth behavior.

3.2.4 *crack jump behavior*—in tests of chevron-notch specimens, that type of sporadic crack growth which is characterized primarily by periods during which the crack front is nearly stationary until a critical force is reached, whereupon the crack becomes unstable and suddenly advances at high speed to the next arrest point, where it remains nearly stationary until the force again reaches a critical value, etc. (see Fig. 5).


3.2.4.1 Discussion-

A chevron-notch specimen is said to have a crack jump behavior when crack jumps account for more than one half of the change in unloading slope ratio (see 3.2.6) as the unloading slope ratio passes through the range from $0.8r_c$ to $1.2r_c$ (see 3.2.6 and 3.2.7, and 8.3.5.2). Only those sudden crack advances that result in more than a 5 % decrease in force during the advance are counted as crack jumps (Fig. 5).

3.2.5 *steady-state crack*—a crack that has advanced slowly until the crack-tip plastic zone size and crack-tip sharpness no longer change with further crack extension. Although crack-tip conditions can be a function of crack velocity, the steady-state crack-tip conditions for metals have appeared to be independent of the crack velocity within the range attained by the loading rates specified in this test method.

3.2.6 *effective unloading slope ratio, r*—the ratio of an effective unloading slope to that of the initial elastic loading slope on a test record of force versus specimen mouth opening displacement.

E1304 – 97 (2014)

Note 1—See Table 1 for tolerances and other details. FIG. 2 Rod Specimens Standard Proportions

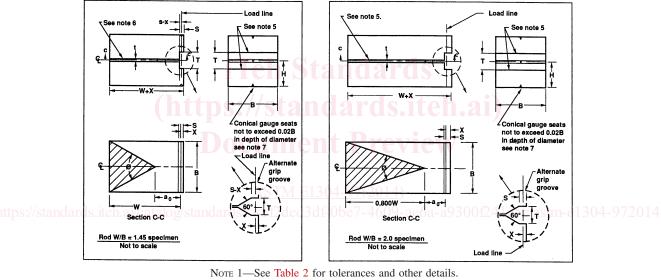
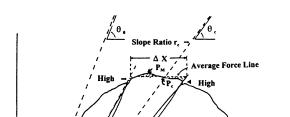


FIG. 3 Bar Specimens Standard Proportions

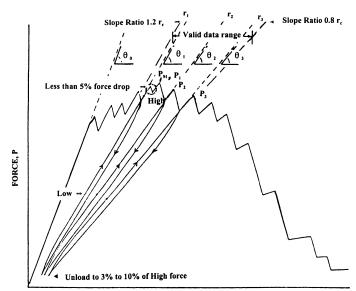
3.2.6.1 Discussion-

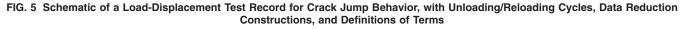

This unloading slope ratio provides a method of determining the crack length at various points on the test record and therefore allows evaluation of stress intensity coefficient Y^* (see 3.2.11). The effective unloading slope ratio is measured by performing unloading-reloading cycles during the test as indicated schematically in Fig. 4 and Fig. 5. For each unloading-reloading trace, the effective unloading slope ratio, r, is defined in terms of the tangents of two angles:

 $r = \tan \theta / \tan \theta_o$

where:

 $\tan \theta_o$ = the slope of the initial elastic line, and $\tan \theta$ = the slope of an effective unloading line.


The effective unloading line is defined as having an origin at the high point where the displacement reverses direction on unloading (slot mouth begins to close) and joining the low point on the reloading line where the force is one half that at the high point.


3.2.6.2 Discussion—

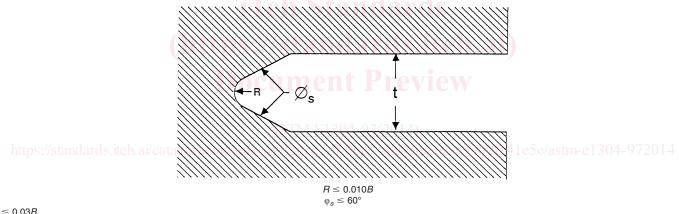
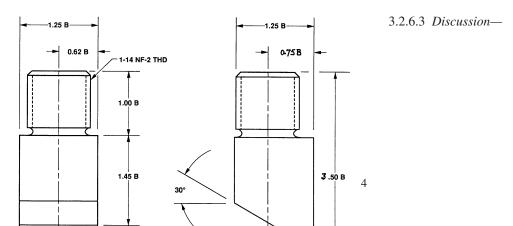

🖽 E1304 – 97 (2014)

FIG. 4 Schematic of a Load-Displacement Test Record for Smooth Crack Growth Behavior, with Unloading/Reloading Cycles, Data Reduction Constructions, and Definitions of Terms

MOUTH OPENING DISPLACEMENT



 $t \leq 0.03B$

Note 1—These requirements are satisfied by slots with a round bottom whenever $t \leq 0.020B$. FIG. 6 Slot Bottom Configuration

For a brittle material with linear elastic behavior the unloading-reloading lines of an unloading-reloading cycle would be linear and coincident. For many engineering materials, deviations from linear elastic behavior and hysteresis are commonly observed to a varying degree. These effects require an unambiguous method of obtaining an effective unloading slope from the test record (**6-5**).²

³ The **boldface** numbers in parentheses refer to the list of references at the end of this standard.

(1014) E1304 – 97 (2014)

- NOTE 1—Machine finish all over equal to or better than 64 µin.
- NOTE 2—Unless otherwise specified, dimensions $\pm 0.010B$; angles $\pm 2^{\circ}$.
- Note 3—Grip hardness should be RC = 45 or greater.

FIG. 7 Suggested Loading Grip Design

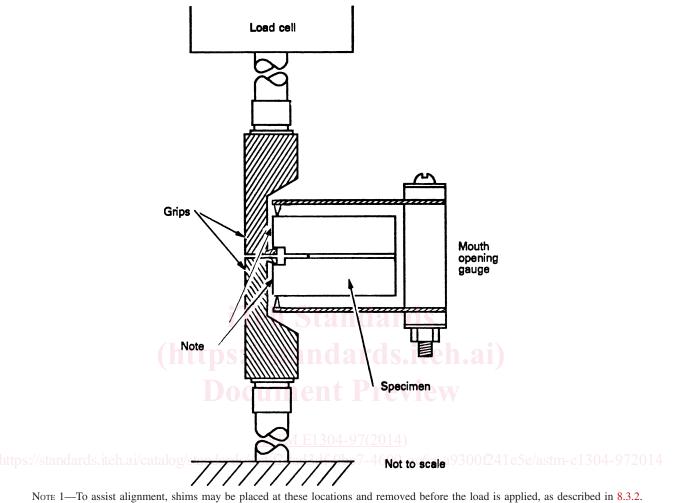
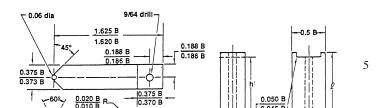


FIG. 8 Recommended Tensile Test Machine Test Configuration

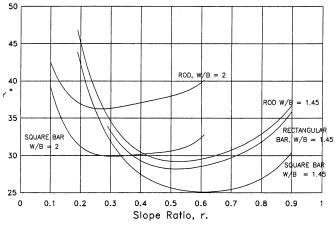
Although r is measured only at those crack positions where unloading-reloading cycles are performed, r is nevertheless defined at all points during a chevron-notch specimen test. For any particular point it is the value that would be measured for r if an unloading-reloading cycle were performed at that point.


3.2.7 critical slope ratio, r_c —the unloading slope ratio at the critical crack length.

3.2.8 *critical crack length*—the crack length in a chevron-notch specimen at which the specimen's stress-intensity factor coefficient, Y^* (see 3.2.11 and Table 3), is a minimum, or equivalently, the crack length at which the maximum force would occur in a purely linear elastic fracture mechanics test. At the critical crack length, the width of the crack front is approximately one third the dimension *B* (Figs. 2 and 3).

3.2.9 *high point, High*—the point on a force-displacement plot, at the start of an unloading-reloading cycle, at which the displacement reverses direction, that is, the point at which the specimen mouth begins closing due to unloading (see points labeled High in Figs. 4 and 5).

3.2.10 *low point, Low*—the point on the reloading portion of an unloading-reloading cycle where the force is one half the high point force (see points labeled Low in Figs. 4 and 5).


3.2.11 stress-intensity factor coefficient, Y^* —a dimensionless parameter that relates the applied force and specimen geometry to the resulting crack-tip stress-intensity factor in a chevron-notch specimen test (see 9.6.3).

3.2.11.1 Discussion—

FIG. 9 Suggested Design for the Specimen Mouth Opening Gage

NOTE 1-Compiled from Refs (1),(2),(3), and (4).

FIG. 10 Normalized Stress-Intensity Factor Coefficients as a Function of Slope Ratio (r) for Chevron-Notch Specimens

TABLE 1 Rod Dimensions

Note 1-All surfaces to be 64-µin. finish or better.

Note 2—Side grooves may be made with a plunge cut with a circular blade, such that the sides of the chevron ligament have curved profiles, provided that the blade diameter exceeds 5.0B. In this case, φ is the angle between the chords spanning the plunge cut arcs, and it is necessary to use different values of φ and a_o (5), so that the crack front has the same width as with straight cuts, at the critical crack length.

Note 3—The dimension a_o must be achieved when forming the side grooves. A separate cut that blunts the apex of the chevron ligament is not permissible.

Note 4—Grip groove surfaces are to be flat and parallel to chevron notch within $\pm 2^{\circ}$.

NOTE 5—Notch on centerline within $\pm 0.005B$ and perpendicular or parallel to surfaces as applicable within 0.005B (TIR).

os://standards.iteh.a/catalog/standards/sist/12ded3df-06e7-4609-ae6a-a93001241e5e/astm-e1304-9/20

perpendicular (==) to the plane of the specified store				
Sym-	Name	Value		- Tolerance
bol		<i>W/B</i> = 1.45	<i>W/B</i> = 2.0	TOIETATICE
В	Diameter	В	В	
W	Length	1.450 <i>B</i>	2.000 <i>B</i>	±0.010 <i>B</i>
ao	Distance to chevron tip	0.481 <i>B</i>	0.400 <i>B</i>	±0.005 <i>B</i>
S	Grip groove depth	0.150 <i>B</i>	0.150 <i>B</i>	±0.010 <i>B</i>
	alternate groove	0.130 <i>B</i>	0.130 <i>B</i>	±0.010 <i>B</i>
Х	Distance to load line	0.100 <i>B</i>	0.100 <i>B</i>	±0.003 <i>B</i>
	alternate groove	0.050 <i>B</i>	0.050 <i>B</i>	±0.003 <i>B</i>
Т	Grip groove width	0.350 <i>B</i>	0.350 <i>B</i>	±0.005 <i>B</i>
	alternate groove	0.313 <i>B</i>	0.313 <i>B</i>	±0.005 <i>B</i>
t	Slot thickness	≤0.030 <i>B</i> ^A	≤0.030 <i>B</i> ^A	
φ	Slot angle	54.6°	34.7°	±0.5°

Note 6—The imaginary line joining the conical gage seats must be perpendicular $(\pm 2^{\circ})$ to the plane of the specimen slot.

^A See Fig. 6.

Values of Y^* can be found from the graphs in Fig. 10, or from the tabulations in Table 4 or from the polynominal expressions in Table 5.

3.2.12 minimum stress-intensity factor coefficient, Y_{m}^{*} —the minimum value of Y^{*} (Table 3).

4. Summary of Test Method

4.1 This test method involves the application of a load to the mouth of a chevron-notched specimen to induce an opening displacement of the specimen mouth. An autographic record is made of the load versus mouth opening displacement and the slopes of periodic unloading-reloading cycles are used to calculate the crack length based on compliance techniques. These crack lengths