Heavy duty cranked link transmission chains

Chaînes de transmission à maillons coudés de haute résistance

First edition - 1976-02-01 iTeh STANDARD PREVIIEW (standards.iteh.ai)

ISO 3512:1976
https://standards.iteh.ai/catalog/standards/sist/f876e381-26d8-4348-9377-
flb2a5028576/iso-3512-1976

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 3512 was drawn up by Technical Committee ISO/TC 100, Chains and chain wheels for power transmission and conveyors, and circulated to the Member Bodies in October 1974tandards.iteh.ai)
It has been approved by the Member Bodies of the following countries:
ISO 3512:1976

Austria	httpridfandards.iteh.ai/catalog/sturkeys/sist/f876e381-26d8-4348-9377-	
Belgium	Italy	flb2a502 United Kingdom76
Bulgaria	Japan	U.S.A.
Finland	Romania	Yugoslavia
France	South Africa, Rep. of	
Germany	Sweden	

The Member Bodies of the following countries expressed disapproval of the document on technical grounds:

Australia
Czechoslovakia

Heavy duty cranked link transmission chains

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies dimensions, tolerances, measuring loads and minimum breaking loads, together with the tooth gap forms and rim profiles of the associated chain wheels, for cranked link ${ }^{11}$ roller chains suitable for the mechanical transmission of power and allied applications under onerous conditions.
The dimensions of chain specified ensure complete interchangeability of any given size and provide interchangeability of individual links of chain for repair purposes.

2 CHAINS

2.1 Nomenclature

The illustrations shown below and in the key to tables 1 and 1 M do not define the lactual form of the chainoplates.
flb2a5028576/iso-

2.2 Designation

Heavy duty cranked link roller chains are designated by the standard ISO numbers given in tables 1 and 1M : the first two digits express the pitch in eighths of an inch, while the second (last) two digits express the bearing pin diameter in sixteenths of an inch.

2.3 Dimensions

Chains shall conform to the dimension given in tables 1 and 1 M . Maximum and minimum dimensions are specified to ensure interchangeability of links as produced by different makers of chain. They represent limits for interchangeability, but are not the actual tolerances that should be used in manufacture.

Pitch p is a theoretical reference dimension used in calculating strand lengths and chain wheel dimensions; it is not intended for inspection of individual links.

iTeh STANDARID PREVIIEW 2.4 Breaking loads

(standal dis. The test length shall have a minimum of three free pitches

 The ends shall be attached to the testing machine shackles by a pin through the plate holes or the bushes. The shackles ishall besso designed 8as to allow universal movement; the actual method to be used is left to the discretion of the manufacturer.Tests in which failures occur adjacent to the shackles shall be disregarded.

The minimum tensile breaking loads shall be those given in tables 1 and 1 M .

FIGURE 1 - Cranked link chain assembly
FIGURE 2 - Typical cranked link components

[^0]
TABLE 1 - Chain dimensions, measuring loads and breaking loads (Inch-pound units)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& \multicolumn{2}{|l|}{9} \& 10 \& 11 \& 12 \& 13 \& 14 \& 15 \& 16

\hline \multirow[t]{2}{*}{ISO chain number} \& Pitch

p \& | Roller diameter |
| :--- |
| d_{1} max. | \& Width between plates at inner end \& Bearing pin body diameter

$$
\begin{gathered}
d_{2} \\
\max .
\end{gathered}
$$ \& Bush bore

$$
\underset{\text { min }}{d_{3}}
$$

\[
\min .

\] \& Chain path depth h_{1} \min. \& | Plate depth |
| :--- |
| h_{2} max. | \& \multicolumn{2}{|l|}{Crank clearance dimensions} \& Width over link at inner end b_{2} max \& Width between plates at outer end

$$
\begin{gathered}
b_{3} \\
\min .
\end{gathered}
$$ \& Width over pin fastening to centre line b_{4} max. \& Width over pin head to to centre line b_{5}

max. \& \begin{tabular}{l}
Chain plate thickness

c nom.

 \&

Measuring

load
\end{tabular} \& Breaking load \min.

\hline \& in \& Ibf \& Ibf

\hline 2010 \& 2.500 \& 1.250 \& 1.50 \& 0.626 \& 0.628 \& 1.90 \& 1.88 \& 0.88 \& 0.94 \& 2.141 \& 2.146 \& 1.88 \& 1.69 \& 0.31 \& 200 \& 59000

\hline 2512 \& 3.067 \& 1.625 \& 1.56 \& 0.751 \& 0.753 \& 2.40 \& 2.38 \& 1.06 \& 1.16 \& 2.328 \& 2.333 \& 2.19 \& 1.88 \& 0.38 \& 300 \& 85000

\hline 2814 \& 3.500 \& 1.750 \& 1.50 \& 0.876 \& 0.879 \& 2.40 \& 2.38 \& 1.25 \& 1.31 \& 2.520 \& 2.525 \& 2.44 \& 2.19 \& 0.50 \& 400 \& 116000

\hline 3315 \& 4.073 \& 1.781 \& 1.94 \& 0.939 \& 0.942 \& 2.52 \& 2.50 \& 1.31 \& 1.38 \& ¢ 3.082 \& 3.087 \& 2.81 \& 2.50 \& 0.56 \& 500 \& 134000

\hline 3618 \& 4.500 \& 2.250 \& 2.06 \& 1.101 \& 1.105 \& 3.15 \& 3.12 \& 1.56 \& 1.62 \& 3.207 \& 3.212 \& 3.00 \& 2.56 \& 0.56 \& 600 \& 183000

\hline 4020 \& 5.000 \& 2.500 \& 2.75 \& 1.251 \& 1.255 \& 3.66 \& 3.62 \& 1.88 \& 2.06 \& 4.031 \& 4.036 \& 3.56 \& 3.06 \& 0.62 \& 800 \& 237000

\hline 4824 \& 6.000 \& 3.000 \& 3.00 \& 1.501 \& 1.506 \& 4.16 \& 4.12 \& 2.19 \& 2.31 \& 4.531 \& 4.536 \& 3.88 \& 3.50 \& 0.75 \& 1100 \& 342000

\hline 5628 \& 7.000 \& 3.500 \& 3.25 \& 1.751 \& 1.757 \& 5.30 \& 5.25 \& 2.56 \& 2.68 \& 5.031 \& 5.036 \& 4.50 \& 4.00 \& 0.88 \& 1500 \& 465000

\hline
\end{tabular}

TABLE 1 M - Chain dimensions, measuring toads and breaking loads (Metric units)

	mm	daN	daN													
$\mathbf{2 0 1 0}$	63,50	31,75	38,1	15,90	15,95	48,3	47,8	22,4	23,9	54,38	54,51	47,8	42,9	7,9	90	26200
$\mathbf{2 5 1 2}$	77,90	41,28	39,6	19,08	19,13	61,1	60,5	26,9	29,5	59,13	59,26	55,6	47,8	9,7	130	37800
$\mathbf{2 8 1 4}$	88,90	44,45	38,1	22,25	22,33	61,1	60,5	31,8	33,3	64,01	64,14	62,0	55,6	12,7	180	51600
$\mathbf{3 3 1 5}$	103,45	45,24	49,3	23,85	23,93	64,1	63,5	33,3	35,1	78,28	78,41	71,4	63,5	14,2	220	59600
$\mathbf{3 6 1 8}$	114,30	57,15	52,3	27,97	28,07	80,0	79,2	39,6	41,2	81,46	81,58	76,2	65,0	14,2	270	81400
$\mathbf{4 0 2 0}$	127,00	63,50	69,9	31,78	31,88	93,0	91,9	47,8	52,3	102,39	102,51	90,4	77,7	15,7	360	105400
$\mathbf{4 8 2 4}$	152,40	76,20	76,2	38,13	38,25	105,7	104,6	55,6	58,7	115,09	115,21	98,6	88,9	19,0	500	152100
$\mathbf{5 6 2 8}$	177,80	88,90	82,6	44,48	44,63	134,6	133,4	65,0	68,1	127,79	127,91	114,3	101,6	22,4	680	206800

[^1]
2.5 Length accuracy

Finished chains shall be measured either dry or after only light lubricating.

The standard nominal length for measurement shall be that nearest to 3048 mm (120 in).

The chain shall be supported throughout its entire length and the measuring load given in tables 1 and 1 M applied. To comply with this International Standard, the length shall be the nominal length subject to the limits of tolerance of $+0,32 \%$.

The length accuracy of chains which have to work in parallel shall be within the above limits but matched by agreement with the manufacturer.

2.6 Working clearances (see figure 3)

The form of the line of cranking, or offset, across the width of the link may be curved or straight.' Th STANDDAzR number of teeth W W

If curved, this distance is $/_{5}$ or I_{6}. Radii $/_{5}$ and I_{6} shall be sufficient to allow clearance over thetadjacent plate nose contained by the clearance radii I_{3} and I_{4} during chain articulation round a seven-tooth wheel.

Side plates may be extended, provided that the extension is within a 30° included angle with respect to the sidebar, as indicated in figure 3. The chain link construction shall always allow for this extension to be adopted.

2.7 Marking

The chain should be marked with
a) the manufacturer's name or trade mark;
b) the ISO number (see 2.2).

3 CHAIN WHEELS

3.1 Nomenclature

The nomenclature for basic chain dimensions on which all wheel data are based will be found in the keys to tables 1 and 1 M . Chain wheel nomenclature is covered under the respective headings.
d $=$ pitch circle diameter

3.2 Diametral dimensions of wheel rim

3.2.1 Nomenclature

FIGURE 4 - Diametral dimensions
$p=$ chordal pitch, equal to chain pitch
$d_{\mathrm{R}}=$ measuring pin diameter
$M_{\text {R }}=$ measurement over pins
rds/sist/1876e381-26d8-4348-9377-
3.2.2 1 Dimensions

3.2.2.1 PITCH CIRCLE DIAMETER

$d=\frac{p}{\sin \frac{180^{\circ}}{z}}$ (see the annex for nominal dimensions of the
normal range of teeth)

3.2.2.2 Measuring pin diameter

$d_{\mathrm{R}}=d_{1}$ (see 3.3.1) subject to tolerance limits $+\underset{0}{0,01 \mathrm{~mm}}$
$+{ }_{0}^{0.0005} 5$

3.2.2.3 Root diameter

$d_{f}=d-d_{1}$ subject to the following tolerance limits :

Root diameter	Tolerance for machined teeth
$d_{\mathrm{f}} \leqslant 305 \mathrm{~mm}(12 \mathrm{in})$	0 $-0,38 \mathrm{~mm}\binom{0}{-0,015 \mathrm{in}}$ $d_{\mathrm{f}} \leqslant 1215 \mathrm{~mm}(48 \mathrm{in})$
0 $-0,50 \mathrm{~mm}\binom{0}{-0,020 \mathrm{in}}$ $d_{\mathrm{f}}>1215 \mathrm{~mm}(48 \mathrm{in})$	0 $0,77 \mathrm{~mm}\binom{0}{-0,030 \mathrm{in}}$

Root diameter	Tolerance for non-machined teeth
$d_{\mathrm{f}} \leqslant 305 \mathrm{~mm}(12 \mathrm{in})$	0 $-1,52 \mathrm{~mm}\binom{0}{-0,06 \mathrm{in}}$ $d_{\mathrm{f}} \leqslant 508 \mathrm{~mm}(20 \mathrm{in})$
$d_{\mathrm{f}} \leqslant 914 \mathrm{~mm}(36 \mathrm{in})$	0 $-2,54 \mathrm{~mm}\binom{0}{-0,10 \mathrm{in}}$ $d_{\mathrm{f}}>914 \mathrm{~mm}(36 \mathrm{in})$
0 $-3,81 \mathrm{~mm}\binom{0}{-0,15 \mathrm{in}}$	0 $-6,35 \mathrm{~mm}\binom{0}{-0,25 \mathrm{in}}$

M_{R} for EVEN numbers of teeth $=d+d_{R}$
M_{R} for ODD numbers of teeth $=d \cos \frac{90^{\circ}}{z}+d_{R}$
The measurement over pins of wheels with EVEN numbers of teeth shall be carried out over pins inserted in opposite tooth gaps.

The measurement over pins of wheels with ODD numbers of teeth shall be carried out over pins in the tooth gaps most nearly opposite.
with the corresponding working faces of the respective teeth.

The limits of tolerance for the measurement over pins are identical with those for the corresponding root diameter.

3.3 Wheel tooth gap forms

3.3.1 Nomenclature (see figure 5)

$p=$ chordal pitch, equal to chain pitch
$d=$ pitch circle diameter
$d_{1}=$ roller diameter, maximum
$r_{\mathrm{i}}=$ roller seating radius
$s=$ pitch line clearance
$\theta=$ pressure angle
$\beta=$ tooth thickness angle (see the annex)
$r_{\mathrm{e}}=$ tooth flank (topping) radius
$d_{\mathrm{f}}=$ root diameter
d_{g} P chain clearance diameter
During measurement the pins shall alwavs bein contactdls. iftelnumber of teeth

3.3.2 Dimensions

The actual tooth gap form which is provided by cutting or by an equivalent method shall have tooth flanks of a form defined by the tooth flank (topping) radius, the working face length and roller seating curve, with a smooth blending from one portion to the next, taking into account the criteria set out as follows :

3.3.2.1 Working face

This is the functional part of the tooth form having a length given by the following :
working face length $=0,01 \times p \times z$
unless reduced by the limitation imposed by having all lines perpendicular to the tooth form pass inside the adjacent pitch point on the pitch circle.

The working face may be straight or convex.
NOTE - The above relationship allows for a chain pitch elongation of approximately 6% where \equiv is less than 40 , progressively decreasing to under 2% at $z=100$.

3.4 Wheel rim profile

3.4.1 Nomenclature

FIGURE 6 - Wheel rim profile
$b_{\mathrm{f}}=$ tooth width
$b_{\mathrm{a}}=$ tooth-side relief
$b_{\mathrm{h}}=$ tooth-side relief depth
$d_{\mathrm{g}}=$ maximum clearance diameter
$\mathrm{P}=$ maximum shroud fillet radius

3.4.2 Dimensions

$b_{\text {f }}$ max $=0,9 b_{1}$
$b_{\mathrm{a}} \quad \approx 0,2 b_{\mathrm{f}}$
$b_{h} \approx 0,5 d_{1}$
3.5 Radial run-out

The radial run-out, measured on one revolution, between the bore and the root diameter shall not exceed the values indicated below:
$0,005 d_{f}$, or $1,5 \mathrm{~mm}(0.06 \mathrm{in})$ for NON-MACHINED teeth. The larger of the two values shall be taken, but in no case shall the radial run-out exceed 10 mm (0.40 in).
$0,001 d_{\mathrm{f}}$, or $0,2 \mathrm{~mm}(0.008 \mathrm{in})$ for MACHINED teeth.
The larger of the two values shall be taken, but in no case shall the radial run-out exceed $5 \mathrm{~mm}(0.20 \mathrm{in})$.

3.6 Axial run-out

Axial run-out, measured with reference to the bore and the flat part of the side face of the teeth, shall not exceed the value for total indicator reading as stipulated for radial run-out in 3.5 .

3.7 Range of teeth

These recommendations apply primarily to a range of teeth from 7 to 100 inclusive.

3.8 Marking

Wheels should be marked with :

- maker's name or trade mark;
- number of teeth;
- chain designation (ISO number or maker's equivalent).

ANNEX

PITCH CIRCLE DIAMETERS

The table below gives correct pitch circle diameters for wheels to suit a chain of unit pitch (for example $1 \mathrm{~mm}, 1 \mathrm{in}$). The pitch circle diameters for wheels to suit a chain of any other pitch are directly proportional to the pitch of the chain (see 3.1).

The last digit is rounded down to avoid the risk of oversize root diameters.

Number of teeth z	Pitch circle diameter	Pressure angle θ degrees $\pm 2^{\circ}$	Tooth thickness angle β approximately degrees	Number of teeth z	Pitch circle diameter	Pressure angle θ degrees $\pm 2^{\circ}$	Tooth thickness angle β approximately degrees
7	2,304	10	25	54	17,198	27	55
8	2,613	11	26	55	17.516	27	55
9	2,923	12	28	56	17.834	27	55
10	3,236	13	30	57	18,152	27	55
11	3,549	14	31	58	18.471	27	55
12	3,863	15	33	59	18,789	27	55
13	4,178	16	35	60	19,107	27	55
14	4,494	17	36	61	19,425	27	55
15	4,809	Ce 18 cr	$\triangle{ }^{38}$ -	D 62 H	T 19,743	27	55
16	5,125	-19	40	63	20,061	27	55
17	5.442	20	42	-4 64 -)	20,380	27	55
18	5,758	20 S	2n 42 Cl	S (1-65.d.)	20,698	27	55
19	6,075	21	44	66	21,016	27	55
20	6,392	21	44	67	21,334	27	55
21	6.709	22	460351	197668	21,652	27	55
22	7,026 https:	/stand $\mathbf{2 2}$ ds.iteh.	i/catalo46standar	s/pist/88769381-20	d8-21,9717377-	27	55
23	7,343	22	flb2a5468576/id	-3512-70/6	22,289	27	55
24	7,661	23	47	71	22,607	28	56
25	7,978	23	47	72	22,925	28	56
26	8,296	23	47	73	23,243	28	56
27	8,613	23	47	74	23,562	28	56
28	8,931	24	49	75	23,880	28	56
29	9,249	24	49	76	24,198	28	56
30	9,566	24	49	77	24,516	28	56
31	9,884	24	49	78	24,834	28	56
32	10,202	24	49	79	25,153	28	56
33	10,520	25	51	80	25,471	28	56
34	10,837	25	51	81	25,789	28	56
35	11,155	25	51	82	26,107	28	56
36	11,473	25	51	83	26,426	28	56
37	11,791	25	51	84	26,744	28	56
38	12,109	25	51	85	27.062	28	56
39	12,427	25	51	86	27,380	28	56
40	12,745	25	51	87	27,699	28	56
41	13,063	26	53	88	28,017	28	56
42	13,381	26	53	89	28,335	28	56
43	13,699	26	53	90	28,653	28	56
44	14.017	26	53	91	28,971	28	56
45	14,335	26	53	92	29,290	28	56
46	14,653	26	53	93	29,608	28	56
47	14,971	26	53	94	29,926	28	56
48	15,289	26	53	95	30,244	28	56
49	15,607	26	53	96	30,563	28	56
50	15,926	26	53	97	30,881	29	58
51	16,244	26	53	98	31,199	29	58
52	16,562	26	53	99	31,518	29	58
53	16,880	27	55	100	31,836	29	58

[^0]: 1) In the U.S.A., the term "offset sidebar" is used in place of "cranked link".
[^1]: Overall width of the connecting link $=b_{4}+b_{5}$
 In the case of a fastener on both sides, overall width $=2 b_{4}$

