International Standard ### **ISO 12815** 2025-02 Second edition ### Fibre-reinforced plastics — Determination of the plain-pin bearing strength Plastiques renforcés de fibres — Détermination de la résistance au matage au moyen d'une goupille ordinaire https://standards.iteh.ai) Document Preview ISO 12815:2025 https://standards.iteh.ai/catalog/standards/iso/0a862d61-3947-4d4b-8555-ebb9eed81ee6/iso-12815-2025 Reference number ISO 12815:2025(en) # iTeh Standards (https://standards.iteh.ai) Document Preview ISO 12815:2025 https://standards.iteh.ai/catalog/standards/iso/0a862d61-3947-4d4b-8555-ebb9eed81ee6/iso-12815-2025 #### **COPYRIGHT PROTECTED DOCUMENT** © ISO 2025 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland ### ISO 12815:2025(en) | Contents | | Page | |-----------|---|------------------| | Forev | ord | iv | | Intro | ıction | v | | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3 | Terms and definitions | | | 4 | Principle | 2 | | 5 | Apparatus | | | 6 | Test specimens | | | | Shape and dimensions 6.1.1 Preferred specimen size 6.1.2 Alternative specimen size 6.2 Preparation of specimens 6.2.1 General 6.2.2 End tab material (if required) 6.2.3 Application of end tabs 6.2.4 Machining the test specimens 6.3 Checking the test specimens | | | 7 | Number of test specimens | 5 | | 8 | Conditioning | 5 | | 9 | Procedure 9.1 Test conditions 9.2 Specimen and pin dimensions 9.3 Testing speed 9.4 Data collection 9.5 Failure load 9.6 Failure mode | 5
5
5
5 | | 10 | Calculation and expression of results | <u> </u> | | 11 | Precision | 7 | | 12 | Test report | 8 | | Anne | A (informative) Interlaboratory validation exercise for plain-pin-bearing test met | hod10 | | | raphy | | #### ISO 12815:2025(en) #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights. Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 61, *Plastics*, Subcommittee SC 13, *Composites and reinforcement fibres*. This second edition cancels and replaces the first edition (ISO 12815:2013), which has been technically revised. The main changes are as follows: - ISO 12815:2025 - the measurement of the roundness of the hole has been added; - the range of testing speed has been expanded; - the roundness of the hole in the test reports has been added. Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. #### ISO 12815:2025(en) #### Introduction In preparing this harmonized version to other similar methods, such as prEN 6037 and ASTM D 5961, harmonization with open-hole tests has been achieved where relevant (e.g. specimen and hole size). The method is applicable to all current and future fibre-reinforced plastic composites meeting the requirements of this document. The method described in this document uses the maximum load to define the plain-pin laminate bearing strength. This point is well-defined and has been shown to be at a similar level to the less easily defined, initial failure in the similar "torqued bolt" test(s). In the torqued bolt test, the load can increase after the bearing failure (up to \times 2), as the failed material is jammed against the bolt, washers and loading jigs. The property determined applies only to the laminate lay-up tested. The strength properties of "bolted" joints are dependent on the actual conditions involved for the joint being assessed. This includes initial bolt torque (including any load lost in bolt threads), effect of relaxation due to visco-elastic effects, effect of hot/wet conditioning, washer size/over-size, bolt material/rivet details and chamfer depth/plate thickness. It is recommended that additional tests to the plain-pin test be conducted for the actual joint conditions of interest in the applications, as no standardized configuration can represent all these variations. ASTM D 5961 can be used as guidance on bolted joint tests. ## iTeh Standards (https://standards.iteh.ai) Document Preview ISO 12815:2025 https://standards.iteh.ai/catalog/standards/iso/0a862d61-3947-4d4b-8555-ebb9eed81ee6/iso-12815-2025 # iTeh Standards (https://standards.iteh.ai) Document Preview ISO 12815:2025 https://standards.iteh.ai/catalog/standards/iso/0a862d61-3947-4d4b-8555-ebb9eed81ee6/iso-12815-2025 # Fibre-reinforced plastics — Determination of the plain-pin bearing strength #### 1 Scope This document specifies a procedure for determining the plain-pin bearing strength of fibre-reinforced plastic composites. The method described in this document is applicable to fibre-reinforced plastic composites with either thermoset or thermoplastic matrices. #### 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 291, Plastics — Standard atmospheres for conditioning and testing ISO 472, *Plastics* — *Vocabulary* ISO 527-4:2023, Plastics — Determination of tensile properties — Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites ISO 1268 (all parts), Fibre-reinforced plastics — Methods of producing test plates ISO 2602, Statistical interpretation of test results — Estimation of the mean — Confidence interval ISO 5893, Rubber and plastics test equipment — Tensile, flexural and compression types (constant rate of traverse) — Specification catalog/standards/iso/0a862d61-3947-4d4b-8555-ebb9eed81ee6/iso-12815-2025 #### 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO 472 and the following apply. ISO and IEC maintain terminology databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at https://www.electropedia.org/ #### 3.1 #### plain-pin bearing strength stress obtained by dividing the maximum load by the projected cross-sectional area of the pin contact area with the specimen (i.e. $d \times t$) Note 1 to entry: The result is expressed in megapascals, MPa. Key - t thickness e distance from end of specimen - w specimen width ISO 128h length of tabbing (if used) - Lhttpspecimen length eh.ai/catalog/standards/iso/0a862 d 1-pin/hole diameter ebb9eed81ee6/iso-12815-2025 Figure 1 — Test specimen for determination of plain-pin bearing strength #### 4 Principle A test specimen consisting of a strip of rectangular cross-section with a plain hole, centrally positioned with respect to the width, is loaded in tension by a clearance fit metallic plain-pin. The maximum load sustained by the specimen is used to determine the plain-pin bearing strength, based on the projected area on the pin in contact with the specimen. The test measures a plain-pin bearing strength under these loading conditions, rather than a load to fail a bolted joint, for the laminate lay-up tested. #### 5 Apparatus - 5.1 Test machine. - **5.1.1 General**, test machine conforming to ISO 5893 as appropriate to the requirements given in <u>5.1.2</u> to <u>5.1.3</u>. - **5.1.2 Speed of testing**, *v*, shall be kept constant according to ISO 5893. - **5.1.3 Indicator for load**, such that the error in the indicated force is less than ± 1 % of the full scale (see ISO 5893). - **5.2 Micrometer**, or equivalent, capable of reading to 0,01 mm, or less, and suitable for measuring the thickness, t and width, w of the test specimen; and the pin/hole diameter, d and position. The micrometer shall have faces appropriate to the surface being measured (i.e. flat faces for flat, polished surfaces and hemispherical faces for irregular surfaces). - **5.3 Loading jig and pin**, the plain-pin is loaded by a double-shear metal plate assembly, as shown in Figure 2. The loading jig shall include clearance, c, of at least 0,5 mm on both sides of the specimen and shall not distort under the applied load. The pin should be manufactured in a hardened steel. The loading pin shall similarly not distort during the test and should be a clearance fit in the hole in the specimen, unless specified otherwise. The loading pin shall have a diameter of 6 mm (tolerance 0 to -0.05 mm). NOTE Hardened plates are acceptable as an alternative to the use of the hardened bushes shown in Figure 1. #### Key - 1 grip plate - 2 side plate - 3 hardened bushes - 4 hardened loading pin - 5 specimen - 6 machine grips - *c* clearance = 0,5 mm (minimum) Figure 2 — Loading plates and test arrangement #### 6 Test specimens #### 6.1 Shape and dimensions #### 6.1.1 Preferred specimen size The specimen shall have a width, w, of 36 mm \pm 0,5 mm and a length, L of 100 to 180 mm. In cases of dispute, the specimen length shall be 180 mm. For specimen thickness, reference shall be made to the appropriate part of the ISO 1268 series for test panel manufacture, otherwise a minimum of 4 mm shall be used for the pin hole size given in 6.1.2. The width of individual specimens shall be parallel to within 0,2 mm. The configuration of the specimen is shown in Figure 1. A hole, 6 mm (tolerance 0 mm to ± 0.05 mm) in diameter is machined within 0,1 mm of the specimen centre line and a distance, e, of 36 mm (i.e. 6 \times the hole diameter) from the end of the coupon. Providing that an acceptable bearing failure (confer shear-out) is still obtained, the end distance, e, can be reduced to 18 mm. #### 6.1.2 Alternative specimen size Alternative specimens shall maintain a specimen width/hole diameter and an end distance/hole diameter ratio of 6; and a plain-pin diameter/specimen thickness of 1,5. NOTE For existing applications, a 6.35 mm (0.25) hole at 38.1 mm (1.5) from the end of a 38.1 mm (1.5) wide coupon meets these requirements. #### **6.2** Preparation of specimens #### 6.2.1 General A test plate shall be prepared in accordance with the ISO 1268 series or another specified/agreed procedure. Individual specimens or groups of specimens shall be cut to the required size. Some parameters for machining are specified in ISO 2818. Further guidance on cutting specimens is given in ISO 527-4:2023, Annex A. The plate configuration shall be, if not given by the materials specification or as agreed by the interested parties, in a pseudo isotropic configuration. The 0° , x or axial direction in the plate shall be marked (see ISO 1268-4). NOTE For 0,125 mm thick unidirectional plies, the quasi- isotropic configuration lay-up for a 4 mm thick panel is given by $[+45^{\circ}, 90^{\circ}, -45^{\circ}, 0^{\circ}]_{8S}$ (i.e. 8 repeats of the stacking unit). #### 6.2.2 End tab material (if required) Providing failure does not occur at or within the grip, unbonded tabs or no tabs may be used. If tabs are used, they shall be constructed from a cross-ply or fabric glass-fibre/resin laminate, or from the material under test. The tab material thickness shall be between $0.5 \, \text{mm}$ and $2 \, \text{mm}$ thick, with a tab angle of 90° (i.e. not tapered). See ISO 527-4. #### 6.2.3 Application of end tabs Bonded end tabs, if used, shall be applied to the specimen with a high elongation adhesive, as described in ISO 527-4:2023, Annex A. NOTE A similar procedure can be used for individual specimens or for a group of specimens. #### 6.2.4 Machining the test specimens The test specimen shall be cut and the hole drilled without causing damage.