

Designation: A522/A522M - 13 A522/A522M - 14

Standard Specification for Forged or Rolled 8 and 9% Nickel Alloy Steel Flanges, Fittings, Valves, and Parts for Low-Temperature Service¹

This standard is issued under the fixed designation A522/A522M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This specification² covers 8 and 9 % nickel-alloy steel forged or rolled flanges, fittings, valves, and parts intended for use in welded pressure vessels for low-temperature service. The specification is applicable to forgings with maximum section thickness of 3 in. [75 mm] in the double normalized and tempered condition and 5 in. [125 mm] in the quenched and tempered condition. Forgings under this specification are intended for service at operating temperatures not lower than -320 °F [-196 °C] for Type I or -275 °F [-170 °C] for Type II or higher than 250 °F [121 °C].
 - 1.2 Material under this specification is available in two types having different chemical compositions as follows:

Nominal Nickel Content, % 9

- 1.3 This specification is expressed in both inch-pound units and SI units. However, unless the order specifies the applicable "M" specification designation (SI units), the material shall be furnished to inch-pound units.
- 1.4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

2. Referenced Documents

2.1 ASTM Standards:³

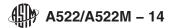
A788/A788M Specification for Steel Forgings, General Requirements

A961/A961M Specification for Common Requirements for Steel Flanges, Forged Fittings, Valves, and Parts for Piping **Applications**

$\textbf{3. General Requirements and Ordering Information} \ 120 a-ce 05-45 a a-84 b 7-65 a 52 fe 95 d 29 / a stm-a 522-a 522 m-14 a stm-a 522$

- 3.1 Product furnished to this specification shall conform to the requirements of Specification A961/A961M, including any supplementary requirements that are indicated in the purchase order. Failure to comply with the requirements of Specification A961/A961M constitutes nonconformance with this specification.
- 3.2 It is the purchaser's responsibility to specify in the purchase order all ordering information necessary to furnish the needed material. Examples of such information include but are not limited to the ordering information in Specification A961/A961M and
 - 3.2.1 Any supplementary requirements, and
 - 3.2.2 Additional requirements, (See 4.5, 5.2, 6.1, 7.2, and 10.3).

4. Materials and Manufacture


- 4.1 The steel shall be produced in accordance with the melting process section of Specification A788/A788M.
- 4.2 Material for forgings shall consist of ingots, or either forged or rolled blooms, billets, or bars.

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications.

Current edition approved Oct. 1, 2013Oct. 1, 2014. Published October 2013October 2014. Originally approved in 1964. Last previous edition approved in 2011 as 2013 s A522/A522M-11.-13. DOI: 10.1520/A0522_A0522M-13.10.1520/A0522_A0522M-14.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SA-522 in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

- 4.3 The finished product shall be a forging as defined in the Terminology Section of Specification A788/A788M.
- 4.4 Except for flanges of all types, hollow cylindrically shaped parts may be made from hot-rolled or forged bar, provided that the axial length of the part is approximately parallel to the metal flow lines of the stock. Except for all types of flanges, elbows, return bends, tees, and header tees, other parts up to and including NPS 4 may be machined from hot-rolled or forged bar.
- 4.5 When specified in the order, the manufacturer shall submit for purchaser's approval a sketch showing the shape of the rough forging before machining.

5. Chemical Composition

- 5.1 The steel shall conform to the requirements of Table 1.
- 5.2 If required by the purchaser, product analysis may be performed in accordance with the requirements of A961/A961M.

6. Heat Treatment

- 6.1 The forgings shall be heat treated by the manufacturer by either of the following methods as mutually agreed upon between the purchaser and the manufacturer.
- 6.1.1 Quenched and Tempered—Heat to a uniform temperature of 1475 ± 25 °F [800 ± 15 °C]; hold at this temperature for a minimum time of 1 h/in. [2.5 min/mm] of thickness but in no case less than 30 min; quench by immersion in circulating water. Reheat until the forging attains a uniform temperature within the range from 1050 to 1125 °F [565 to 605 °C]; hold at this temperature for a minimum time of 1 h/in. [2.5 min/mm] of thickness but in no case less than 30 min; cool in air or water quench, at a rate not less than 300 °F [165 °C]/h.
- 6.1.2 Double Normalized and Tempered—Heat to a uniform temperature of 1650 °F [900 °C]; hold at this temperature for a minimum time of 1 h/in. [2.5 min/mm] of thickness but in no case less than 30 min; cool in air. Reheat until the forging attains a uniform temperature of 1450 °F [790 °C]; hold at this temperature for a minimum time of 1 h/in. [2.5 min/mm] of thickness but in no case less than 30 min; cool in air. Reheat to a uniform temperature within the range from 1050 to 1125 °F [565 to 605 °C]; hold at this temperature for a minimum time of 1 h/in. [2.5 min/mm] of thickness but in no case less than 30 min; cool in air or water quench, at a rate not less than 300 °F [165 °C]/h.
- 6.2 When stress relieving is to be performed after fabrication, the recommended stress-relieving treatment is as follows: gradually and uniformly heat the steel to a temperature between 1025 and 1085 °F [550 and 585 °C]; hold for a minimum of 2 h for thicknesses up to 1 in. [25 mm]. For thicknesses over 1 in. [25 mm], a minimum additional holding time in the ratio of 1 h/in. [2.5 min/mm] of thickness in excess of 1 in. [25 mm] shall be added. Cool at a minimum rate of 300 °F [165 °C]/h to a temperature not exceeding 600 °F [315 °C].

7. Mechanical Properties

- 7.1 Tension Test—Forgings to Types 1 and 2 shall conform to the tensile requirements of Table 2.
- 7.2 *Impact Test*—The Charpy impact test requirements in Table 3 shall be met unless Supplementary Requirement S2 of this specification has been specified.
- 7.2.1 The values for energy absorption and the fracture appearance in percentage of shear fracture for each specimen shall be recorded and reported for information.

8. Workmanship, Surface Finish, Appearance, and Appearance-Corrosion Protection

8.1 The forgings shall have arequirements of Specification A961/A961M workman-like finish and shall be free of injurious defects, apply to forgings and finished parts.

9. Number of Tests and Retests

9.1 At least one tension test and one set of Charpy V-notch impact tests shall be made from each heat in each heat-treatment charge.

TABLE 1 Chemical Requirements

	Composition, %	
	Type I	Type II
Carbon, max	0.13	0.13
Manganese, max	0.90	0.90
Phosphorus, max	0.025	0.025
Sulfur, max	0.025	0.025
Silicon ^A	0.15-0.30	0.15-0.30
Nickel	8.5–9.5	7.5–8.5

 $^{^{\}rm A}$ When vacuum carbon deoxidation is used, the maximum silicon content shall be 0.10 %.