Designation: $D3350 - 12^{\epsilon 1}D3350 - 14$ # Standard Specification for Polyethylene Plastics Pipe and Fittings Materials¹ This standard is issued under the fixed designation D3350; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval. ε¹ NOTE—Editorial corrections were made in April 2013. # 1. Scope* - 1.1 This specification covers the identification of polyethylene plastic pipe and fittings materials in accordance with a cell classification system. It is not the function of this specification to provide specific engineering data for design purposes, to specify manufacturing tolerances, or to determine suitability for use for a specific application. - 1.2 Polyethylene plastic materials, being thermoplastic, are reprocessable and recyclable (Note 2). This specification allows for the use of those polyethylene materials, provided that all specific requirements of this specification are met. - Note 1—The notes in this specification are for information only and shall not be considered part of this specification. - Note 2—See Guide D5033 for information and definitions related to recycled plastics. - 1.3 The values stated in SI units are to be regarded as standard. - 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. - Note 3—There is no known ISO equivalent to this standard. - 1.5 For information regarding molding and extrusion materials see Specification D4976. For information regarding wire and cable materials see Specification D1248. ### 2. Referenced Documents 2.1 ASTM Standards:² D618 Practice for Conditioning Plastics for Testing D638 Test Method for Tensile Properties of Plastics D746 Test Method for Brittleness Temperature of Plastics and Elastomers by Impact 42d9dbdc686ffastm-d3350-14 D790 Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials D792 Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement D883 Terminology Relating to Plastics D1238 Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer D1248 Specification for Polyethylene Plastics Extrusion Materials for Wire and Cable D1505 Test Method for Density of Plastics by the Density-Gradient Technique D1603 Test Method for Carbon Black Content in Olefin Plastics D1693 Test Method for Environmental Stress-Cracking of Ethylene Plastics D1898 Practice for Sampling of Plastics (Withdrawn 1998)³ D2837 Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products D2839 Practice for Use of a Melt Index Strand for Determining Density of Polyethylene D3035 Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter D3892 Practice for Packaging/Packing of Plastics ¹ This specification is under the jurisdiction of ASTM Committee D20 on Plastics and is the direct responsibility of Subcommittee D20.15 on Thermoplastic Materials. Current edition approved April 1, 2012Nov. 1, 2014. Published May 2012 December 2014. Originally approved in 1974. Last previous edition approved in 2010/2012 as D3350 - 10D3350 - 12c1A.. DOI: 10.1520/D3350-12E01.10.1520/D3350-14. ² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website. ³ The last approved version of this historical standard is referenced on www.astm.org. - D4218 Test Method for Determination of Carbon Black Content in Polyethylene Compounds By the Muffle-Furnace Technique - D4703 Practice for Compression Molding Thermoplastic Materials into Test Specimens, Plaques, or Sheets - D4883 Test Method for Density of Polyethylene by the Ultrasound Technique - D4976 Specification for Polyethylene Plastics Molding and Extrusion Materials - D5033 Guide for Development of ASTM Standards Relating to Recycling and Use of Recycled Plastics (Withdrawn 2007)³ - F1473 Test Method for Notch Tensile Test to Measure the Resistance to Slow Crack Growth of Polyethylene Pipes and Resins - F2263 Test Method for Evaluating the Oxidative Resistance of Polyethylene (PE) Pipe to Chlorinated Water - 2.2 ISO Standard: - ISO 12162 Thermoplastic Materials for Pipes and Fittings for Pressure Applications—Classification and Designation—Overall Service (Design) Coefficient ## 3. Terminology - 3.1 Definitions: - 3.1.1 Terms as described in Terminology D883 shall apply in this specification. - 3.1.2 polyethylene plastics—as defined by this specification, plastics or resins prepared by the polymerization of no less than 85 % ethylene and no less than 95 % of total olefins with additional compounding ingredients. - 3.2 Definitions of Terms Specific to This Standard: - 3.2.1 *materials*—polyethylene (PE) resins with the added compounding ingredients. - 3.2.2 PE compounds—has the same meaning as PE plastics materials, compounds, and plastics. - 3.3 Historical usage and user group conventions have resulted in inconsistent terminology used to categorize and describe polyethylene resins and compounds. The following terminology is in use in ASTM specifications pertaining to polyethylene: - 3.3.1 Specification D1248: - 3.3.1.1 Type (0, I, II, III, IV) = density ranges (same, respectively, as Class in Specification D4976). - 3.3.1.2 Class (A, B, C, D) = composition and use. - 3.3.1.3 Category (1, 2, 3, 4, 5) = melt index ranges (same as Grade in Specification D4976). - 3.3.1.4 Grade (E, J, D, or W followed by one or two digits) = specific requirements from tables. - 3.3.2 Specification D3350: - 3.3.2.1 Type (I, II, III) = density ranges (same as Types I, II, and III in Specification D1248 and Classes 1, 2, and 3 in Specification D4976). - 3.3.2.2 Class = a line callout system consisting of "PE" followed by six cell numbers from Table 1 plus a letter (A, B, C, D, E) denoting color and UV stabilizer. - 3.3.2.3 Grade = simplified line callout system using "PE" followed by density and slow crack growth cell numbers from Table 1. - 3.3.3 *Specification* **D4976**: - 3.3.3.1 Group (1, 2) = branched or linear polyethylene. - 3.3.3.2 Class (0, 1, 2, 3, 4) = density ranges (same, respectively, as Type in Specification D1248). - 3.3.3.3 Grade (1, 2, 3, 4, 5) = melt index ranges (same as Category in Specification D1248). ### 4. Classification 4.1 Polyethylene plastic pipe and fittings compounds are classified in accordance with density, melt index, flexural modulus, tensile strength at yield, slow crack growth resistance, and hydrostatic strength classification in Table 1. Note 4—It has been a long-standing practice to use the following terms in describing polyethylene plastics: Type I (0.910 to 0.925) = Low Density Type II (0.926 to 0.940) = Medium Density Type III (0.941 to 0.965) = High Density Note 5—The manner in which materials are identified in the cell classification is illustrated for Class PE233424B as follows (refer also to Table 1 and 6.2): TABLE 1 Primary Properties^A —Cell Classification Limits | Property | Test
Method | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |---|----------------|-------------------------|-------------------|--|---------------------------------------|--|---|---------------------|------------------|------------------| | 1. Density, g/cm ³ | D1505 | Unspecified | 0.925 or
lower | >0.925-
0.940 | >0.940-
0.947 | >0.947-
0.955 | >0.955 | | Specify
Value | | | 2. Melt index | D1238 | Unspecified | >1.0 | 1.0 to
0.4 | <0.4 to 0.15 | <0.15 ^B | С | | Specify
Value | | | 3. Flexural
modulus, MPa (psi) | D790 | Unspecified | <138
(<20 000) | 138-
<276
(20 000 to
<40 000) | 276-
<552
(40 000 to
80 000) | 552-
<758
(80 000 to
110 000) | 758-
<1103
(110 000 to
<160 000) | >1103
(>160 000) | Specify
Value | | | 4. Tensile strength at yield, MPa (psi) | D638 | Unspecified | <15
(<2200) | 15-<18
(2200-
<2600) | 18-<21
(2600-
<3000) | 21-<24
(3000-
<3500) | 24-<28
(3500-
<4000) | >28
(>4000) | Specify
Value | | | 5. Slow Crack Growth Resistance I. ESCR a. Test condition (100% Igepal.) ^D | D1693 | Unspecified | A | В | С | С | | | | Specify
Value | | b. Test duration, h c. Failure, max, % II. PENT (hours) | F1473 | Unspecified | 48
50 | 24
50 | 192
20 | 600
20 | | | | value | | Molded plaque,
80°C, 2.4 MPa
Notch depth,
F1473, Table 1 | 0 | Unspecified Unspecified | • • • | ••• | | 10 | 30 | 100 | 500 | Specify
Value | | Hydrostatic Strength Classification Hydrostatic design basis, MPa (psi), (23°C) | D2837 | NPR ^E | 5.52
(800) | 6.89
(1000) | 8.62
(1250) | 11.03
(1600) | | | | | | II. Minimum required strength, MPa (psi), (20°C) | ISO 12162 | ttns | ·//st | and | ard | s itel | 8
(1160) | 10
(1450) | | | ^ACompliance with physical properties in accordance with Section 8 is required including requirements for cell classification, color, and ultraviolet (UV) stabilizer, thermal stability, brittleness temperature, density, tensile strength at yield, and elongation at break. https://standards.iteh.ai/catalog/standards/sist/f085abb8-f379-47b1-9a36-42d9dbdc686f/astm-d3350-14 Color and UV stabilizer (colored) 4.2 Materials used in polyethylene plastic pipe and fittings shall use a cell-type format for the identification, close characterization, and specification of material properties. The information from the format is to be used alone or in combination. Note 6—This type format, however, is subject to possible misapplication since unobtainable property combinations can be selected if the user is not familiar with commercially available materials. The manufacturer should be consulted. Additionally, the appropriate ASTM standard specification should be reviewed to assure materials utilized will meet all the material and piping requirements as specified in the standard. 4.3 *Grade*—A code for polyethylene pipe and fittings materials that consists of the two letter abbreviation for polyethylene (PE) followed by two numbers that designate the density cell (Property 1) and the slow crack growth resistance cell (Property 5), as defined by either Test Method F1473 or Test Method D1693, of the thermoplastic, as specified in Table 1. For the requirements of Property 5 (slow crack growth resistance), consult the materials section of the appropriate ASTM standard specification for the end-use application. Note 7—Grade designations were adapted from Specification D1248-84 prior to the removal of pipe material from D1248-84. Former Specification D1248-84 grades for PE pipe materials were P14, P23, P24, P33, and P34. Equivalent Specification D3350 grade designations for these materials are PE11, PE20, PE23, PE30, and PE33, respectively. #### 5. Materials and Manufacture - 5.1 The molding and extrusion material shall be polyethylene plastic in the form of powder, granules, or pellets. - 5.2 The molding and extrusion materials shall be as uniform in composition and size and as free of contamination as is achieved by good manufacturing practice. If necessary, the level of contamination may be agreed upon between the manufacturer and the purchaser. ^B-Refer Refer to 10.1.4.1. ^C-Refer Refer to 10.1.4.2. ^DThere are environmental concerns regarding the disposal of Nonylphenoxy poly(ethyleneoxy) ethanol (CAS 68412-54-4) for example, Igepal CO-630. Users are advised to consult their supplier or local environmental office and follow the guidelines provided for the proper disposal of this chemical. ENPRINER = Not Pressure Rated (a) Specimen in pan. (b) Reference—Temperature standard shall be placed under reference disk in reference pan or alternatively under pan cover (spacer). FIG. 1 Mounting Film Specimen in Cup #### ASTM D3350-14 5.3 When specified, the color and translucence of molded or extruded pieces formed, under the conditions specified by the manufacturer of the materials, shall be comparable within commercial match tolerances to the color and translucence of standard samples supplied in advance by the manufacturer of the material. #### 6. Physical Properties - 6.1 Cell Classification—Test values for specimens of the PE material prepared as specified in Section 9 and tested in accordance with Section 10 shall conform to the requirements given in Table 1. A typical property value for a PE material is to be the average value from testing numerous lots or batches and determines the cell number. When, due to manufacturing tolerances and testing bias, individual lot or batch values fall into the adjoining cell, the individual value shall not be considered acceptable unless the user, or both the user and the producer, determine that the individual lot or batch is suitable for its intended purpose. - 6.2 *Color and Ultraviolet (UV) Stabilizer*—The color and UV stabilization shall be indicated at the end of the cell classification by means of a letter designation in accordance with the following code: | Code Letter | Color and UV Stabilizer | |-------------|---------------------------------------| | Α | Natural | | В | Colored | | С | Black with a carbon black in | | | the range as noted in 6.2.1 and 6.2.2 | | D | Natural with UV stabilizer | | E | Colored with UV stabilizer | - 6.2.1 For PE compounds with a hydrostatic strength classification cell class 0 (not pressure-rated), the carbon black content shall be in the range of 2.0 % to 4.0 %. - 6.2.2 For PE compounds with a hydrostatic strength classification other than cell class 0, the carbon black content shall be in the range of 2.0 % to 3.0 %. - 6.3 *Thermal Stability*—The PE material shall contain sufficient antioxidant so that the minimum induction temperature shall be 220°C when tested in accordance with 10.1.9.