This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: E2581 - 07 E2581 - 14

Standard Practice for Shearography of Polymer Matrix Composites, Composites and Sandwich Core Materials and Filament-Wound Pressure Vessels in Aerospace Applications¹

This standard is issued under the fixed designation E2581; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope

1.1 This practice describes procedures for shearography of polymer matrix composites, <u>composites and</u> sandwich core <u>materials</u>, and filament-wound pressure vessels-<u>materials</u> made entirely or in part from fiber-reinforced polymer matrix composites. The composite materials under consideration typically contain continuous high modulus (greater than 20 GPa (3×106 psi)) fibers, but may also contain discontinuous fiber, fabric, or particulate reinforcement.

1.2 This practice describes established shearography procedures that are currently used by industry and federal agencies that have demonstrated utility in quality assurance of polymer matrix eomposites, <u>composites and</u> sandwich core materials, and <u>filament-wound pressure vessels materials</u> during product process design and optimization, manufacturing process control, <u>postafter</u> manufacture inspection, and in service inspection.

1.3 This practice has utility for testing of polymer matrix composites, composites and sandwich core materials, and filament-wound pressure vessels materials containing but not limited to bismaleimide, epoxy, phenolic, poly(amideimide), polybenzimidazole, polyester (thermosetting and thermoplastic), poly(ether ether ketone), poly(ether imide), polyimide (thermosetting and thermoplastic), poly(phenylene sulfide), or polysulfone matrices; and alumina, aramid, boron, carbon, glass, quartz, or silicon carbide fibers. Typical as-fabricated geometries include uniaxial, eross ply and angle ply cross-ply and angle-ply laminates; as well as honeycomb and foam core sandwich materials and structures.

1.4 This practice does not specify accept-reject criteria and is not intended to be used as a means for approving polymer matrix composites, <u>composites or</u> sandwich core materials, or filament-wound pressure vessels for service. (Please note that a flaw does not become a defect until rejected by acceptance/rejection criteria.)materials for service.

1.5 To ensure proper use of the referenced standards, there are recognized nondestructive testing (NDT) specialists that are certified in accordance with according to industry and company NDT specifications. It is recommended that an NDT specialist be a part of any composite component design, quality assurance, in service in-service maintenance, or damage examination activity.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

C274 Terminology of Structural Sandwich Constructions

D3878 Terminology for Composite Materials

D5687/D5687M Guide for Preparation of Flat Composite Panels with Processing Guidelines for Specimen Preparation E543 Specification for Agencies Performing Nondestructive Testing

E1309 Guide for Identification of Fiber-Reinforced Polymer-Matrix Composite Materials in Databases

¹ This practice is under the jurisdiction of ASTM Committee E07 on Nondestructive Testing and is the direct responsibility of Subcommittee E07.10 on Specialized NDT Methods.

Current edition approved Sept. 1, 2007 Oct. 1, 2014. Published October 2007 December 2014. Originally approved in 2007. Last previous edition approved as E2581-07. DOI: 10.1520/E2581-07.10.1520/E2581-14.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

🦻 E2581 – 14

E1316 Terminology for Nondestructive Examinations

E1434 Guide for Recording Mechanical Test Data of Fiber-Reinforced Composite Materials in Databases

E1471 Guide for Identification of Fibers, Fillers, and Core Materials in Computerized Material Property Databases

E2533 Guide for Nondestructive Testing of Polymer Matrix Composites Used in Aerospace Applications

E1736E2982 PracticeGuide for Acousto-Ultrasonic Assessment of Nondestructive Testing of Thin-Walled Metallic Liners in Filament-Wound Pressure Vessels Used in Aerospace Applications

F1364 Practice for Use of a Calibration Device to Demonstrate the Inspection Capability of an Interferometric Laser Imaging Nondestructive Tire Inspection System

2.2 Federal Standards:³

21 CFR 1040.10 Laser products

21 CFR 1040.11 Specific purpose laser products

29 CFR 1910.95 Occupational Noise Exposure

2.3 ANSI Standard:⁴

Z136.1-2000 Safe Use of Lasers

2.2 ASNT Standards:³

SNT-TC-1A Recommended Practice for Personnel Qualification and Certification in Nondestructive Testing ANSI/ASNT CP-189 Standard for Qualification and Certification of Nondestructive Testing Personnel

2.3 AIA Document:⁴

NAS-410 Certification and Qualification of Nondestructive Test Personnel

2.4 ISO Standard: BSI Document: 5

EN 60825-1 Safety of Laser Products - Part 1: Equipment Classification, Requirements, and User's Guide

2.5 LIA Document:⁶

ANSI Z136.1-2000 Safe Use of Lasers

2.6 Federal Standards:⁷

21 CFR 1040.10 Laser products

21 CFR 1040.11 Specific purpose laser products

29 CFR 1910.95 Occupational Noise Exposure

3. Terminology

3.1 *Definitions*—Definition of terms related to structural sandwich constructions, NDT, and composites appearing in Terminologies C274, E1316, and D3878, respectively, shall apply to the terms used in this practice.standard.

3.2 *Definitions:* <u>Definitions of Terms Specific to This Standard:</u>

3.2.1 *aerospace*—any component that will be installed on a system that flies.

3.2.2 *beam splitter*—an optical element capable of splitting a single beam of coherent laser light into two beams. Beam splitters are key elements of Michelson Type Image Shearing Interferometers.

3.2.3 *cognizant engineering organization*—see Terminologythe company, E1316.agency, or other authority responsible for the design or after delivery, end use of the system or component for which laser holographic or laser shearographic examination is required; in addition to design personnel, this may include personnel from material and process engineering, stress anaylsis, NDT, or quality groups and others as appropriate.

3.2.4 *coherent light source*—a light source that converts electrical energy to a monochromatic beam of light having uniform phase over a minimum specified length known as the coherent length.

3.2.5 *component*—the part(s) or element(s) of a system described, assembled, or processed to the extent specified by the drawing.

3.2.6 *composite material*—see Terminology D3878.

3.2.7 *composite component*—a finished part containing composite material(s) that is in its end use application configuration and which has undergone processing, fabrication, and assembly to the extent specified by the drawing, purchase order, or contract.

⁷ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.U.S. Government Printing Office Superintendent of Documents, 732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401, http://www.access.gpo.gov.

⁶ Available from the Laser Institute of America, 13501 Integrity Drive, Suite 128, Orlando FL 32826.

³ Available from U.S. Government Printing Office Superintendent of Documents, 732 N. Capitol St., NW, Mail Stop: SDE, Washington, DC 20401, http:// www.access.gpo.gov.

⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org-

³ Available from American Society for Nondestructive Testing (ASNT), P.O. Box 28518, 1711 Arlingate Ln., Columbus, OH 43228-0518, http://www.asnt.org.

⁴ Available from Aerospace Industries Association of America, Inc. (AIA), 1000 Wilson Blvd., Suite 1700, Arlington, VA 22209-3928, http://www.aia-aerospace.org.

🖽 E2581 – 14

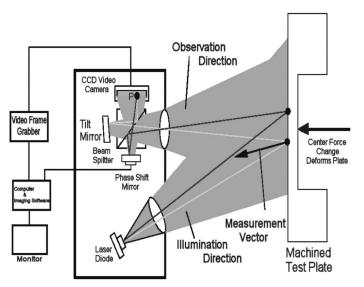


FIG. 21 Schematic diagram of a Michelson type shearing interferometer shown with a shearography calibration device consisting of a metal plate with a machined flat bottomed hole creating a deformable plate with a precision mechanical mechanism for loading at the center point.

3.2.8 composite shell—a multilayer filament winding that comprises a second shell that reinforces the inner shell. The composite shell consists of continuous fibers, impregnated with a matrix material, wound around the inner shell, and cured in place. An example is the Kevlar epoxy filament wound spherical shell shown in Figure 1 in Practice E1736. The number of layers, fiber orientation, and composite shell thickness may vary from point to point.

3.2.9 composite over-wrapped pressure vessel, (COPV)—sec filament-wound pressure vessel.

3.2.8 core crush—a collapse, distortion, or compression of core material in a sandwich structure.

3.2.9 *core separation*—a partial or complete breaking of honeycomb core node bonds.

3.2.10 *disbond*, *unbond* —see Terminology D3878.

3.2.11 *de-correlation*—loss of shearography phase data caused by test part deformation exceeding the resolution of the shearing interferometer or motion occurs between the test object and shearing interferometer during data acquisition.

3.2.12 *delamination*—see Terminology D3878.

3.2.13 *displacement derivatives* $(\partial w/\partial x)$ — rate of spatial displacement change, where w is the surface displacement and x is the surface coordinates.

3.2.16 *excitation method*—applied stress to a test object used in laser holographic or laser shearographic examination to affect motion at the surface of the test object.

3.2.17 *filament-wound pressure vessel*—an inner shell over wrapped with composite layers that form a composite shell. The inner shell or liner may consist of an impervious metallic or nonmetallic material. The vessel may be cylindrical or spherical and will have at least one penetration with valve attachments for introducing and holding pressurized liquids or gases. Also referred to as a Composite Over-Wrapped Pressure Vessel or COPV.

3.2.18 *flaw*, *n*—an imperfection or discontinuity that may be detectable by nondestructive testing and is not necessarily rejectable.

3.2.14 *fringe pattern*—a set of lines in a subtraction or wrapped phase shearogram that represents the locus of equal out-of-plane deformation derivative.

3.2.15 *impact damage*—fracturing of epoxy matrix, fiber breakage, inter-laminar delamination of monolithic composites, composite sandwich structure face sheets or filament-wound composite pressure vessels-due to impact, characterized by visible dimple surface compression, or fiber breakage caused by impact strike and non-visible subsurface matrix cracking and delamination.

3.2.16 *inclusion*—foreign objects or material including but not limited to particles, chips, backing films, razor blades, or tools of varying sizes which are inadvertently left in a composite lay-up.

3.2.17 *indication*—the observation or evidence of a condition resulting from the shearographic examination that requires interpretation to determine its significance, characterized by dimensions, area, s/n ratio, or other quantitative measurement.

3.2.18 *laser shearography inspection, shearography inspection, shearography*—<u>shearography</u>—inspection method utilizing interferometric imaging of deformation derivatives compared between different strain states and designed to reveal non-homogeneities, material changes and structural defects throughout the volume of the material.

3.2.19 *out-of-plane displacement*—the local deformation of a test part, normal to the surface, caused by the application of an engineered force acting on a non-homogeneity or defect in a composite material.

3.2.20 *polymer matrix composite*—any fiber reinforced fiber-reinforced composite lay-up consisting of laminae (plies) with one or more orientations with respect to some reference direction that are consolidated by press, vacuum bagging, or autoclave to yield an engineered part article or structure.

3.2.21 *porosity*—condition of trapped pockets of air, gas, or void within solid materials, usually expressed as a percentage of the total nonsolid volume (solid + nonsolid) of a unit quantity of material.

3.2.22 *sandwich core material*—an engineered part, article, or structure made up of two or more sheets of composite laminate, metal, or other material designed to support in-plane tensile or compressive loads, separated by and bonded to inner core(s) material(s) designed to support normal compressive and tensile loads such as metal or composite honeycomb, open and closed cell foam, wave formed material, bonded composite tubes, or naturally occurring material such as end grain balsa wood. Also referred to as a structural sandwich construction, see Terminology C274.

3.2.23 *scan plan*—a designed sequence of steps for positioning and adjusting a shearography camera to accomplish a desired inspection. Scan plans shall include camera field of view, percentage of image overlap, position sequences for each area to be tested, test number, and location in a coordinate system appropriate for test object geometry and access.

3.2.24 *shearogram*—the resulting image from the complex arithmetic combination of interferograms made with an image shearing interferometer and presented for interpretation in various image processing algorithms including wrapped phase maps (static or real-time), unwrapped phase maps, or-integrated, Doppler shift map.

3.2.25 *shearography camera, shear camera*—an image shearing interferometer used for shearography nondestructive testing, usually including features for adjustment of focus, iris, zoom, shear vector, and projection and adjustment of coherent light onto the test object area to be inspected.

3.2.26 *shear vector*—the separation vector between two identical images of the target in the output of an image shearing interferometer. The Shear vector is expressed in degrees of angle from the X axis, with a maximum of 90°, with + being in the positive Y direction and – in the negative Y direction. The shear distance between identical points in the two sheared images expressed in inches or millimetres.mm. (See Fig. 12): shear vector angle convention).

3.2.27 *stressing device*—the means to apply a measurable and repeatable engineered stress to the test object during shearography inspection. The applied stress may be in the form of a partial vacuum, pressure, heat, mechanical or acoustic-vibration, magnetic field, electric field, microwave, or mechanical load. Also referred to as excitation or excitation method.

3.2.28 void—an empty, unoccupied space in laminate. Voids are associated with bridging and resin starved areas.

4. Summary of Practice

4.1 Shearography nondestructive inspection refers to the use of an image shearing interferometer to image local out-of-plane deformation derivatives on the test part surface in response to a change in the applied engineered load. Shearography images tend

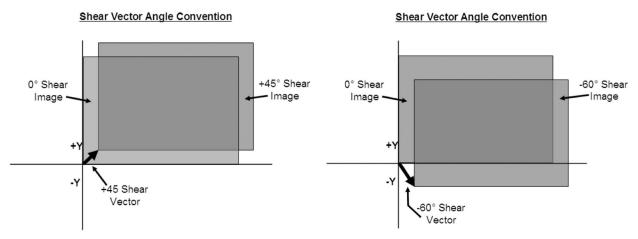


FIG. 12 Shear vector angle convention: Starting with the shear camera adjusted for a 0° shear condition, the sheared image is moved to the right (+X) or up/down, never adjusted in the direction of -X. For a +45° shear vector, the image is moved in the +X and +Y direction. For 60° shear vector, the image is adjusted in the +X and -Y directions. The convention allows determination of deformation direction from the unwrapped phase map.

to show only the local deformation on the target surface due to the presence of a surface or subsurface flaw, delaminations, core damage, or core splice joint separations, as well as impact damage.

4.2 Typical applied loads to the test part are dependent on the test part material reaction to the induced load. The optimum load type and magnitude depend on the flaw type and flaw depth and are best determined before serial testing by making trial measurements. Care is taken to ensure that the magnitude of the applied load is acceptably below the damage threshold of a given test article. The applied load can be any of the following: heat, mechanical vibration, acoustic vibration, pressure and vacuum, electric fields, magnetic fields, microwave, or mechanical load.

4.3 Shearography NDT systems use a common path Michelson, birefringent, birefringant, or beam splitter type shearing interferometer for imaging defects. Some of the most current technology shearography cameras often use a Michelson type interferometer, Fig. 21, with phase stepping capability. The shearography NDT procedure consists of illuminating a test article with fixed frequency laser light before and after a small proof load is applied. A mirror (the tilt mirror), or other optical device is precisely adjusted to induce an offset, or sheared image, of the test article with respect to a second image of the part. The amount of image shear is a vector quantity with an associated direction, angle, and distance (see Fig. +2). The shear vector, among other factors, determines the sensitivity of the interferometer to surface displacement derivatives, $\partial w / \partial x$. The two sheared images of the test image are focused onto the Charge Coupled Device (CCD) CCD camera. Light from pairs of points in each sheared image interfere with each other, causing interference at every paired point across the field of view. A mirror in the Michelson interferometer may be phase shifted using a piezoelectric device and the sequential interferograms combined to create a phase map of the test object (see Fig. 34)). Further processing using any number of unwrapping algorithms may be used to generate fringe free images of local surface deformation derivatives. derivatives (see Fig. 45)). Each video frame, or interferogram, comprises the complex addition of the two sheared images and can be subtracted from a stored reference image in real time, processed as a dynamic real time phase map or as a static image. Stressed test parts will show out-of-plane deformation (strain concentration) near flaws that is significantly greater than the out-of-plane deformation produced in flaw-free areas. These flaw areas are indicated by the presence of indications in phase maps and unwrapped phase maps. The unwrapped shearography image reveals direction of the test object deforming, either towards or away from the camera. This information may be used to discriminate between repairs, which are stiffer, and damage to aerospace sandwich panels.

4.4 Advantages and Applications—Shearography NDT is full field inspection method and specified area or parts can be inspected in a very short period of time. A sample size of 30.5 cm byx 30.5 cm (12 in. byx 12 in.) area might take several minutes to set up, then just a few seconds to apply to selected stress technique, collect and processing of the data. Throughputs range from 4.6 to $46 \text{ m}^2/\text{h}-1/\text{h}^{-1}$ (50 to 500 ft²/h-1)/h⁻¹) depending on the degree of automation, compared to $0.93 \text{ m}^2/\text{h}-1/\text{h}^{-1}$ (10 ft²/h-1)/h⁻¹) throughput typical of Ultrasonic Testing (UT) C-Scan, depending on scan increment step size. Shearography inspection is non-contact, non-contaminating and does not require couplant or submersion. For production systems, shearography camera is typically located from 0.6 to 1.8 m (2 to 6 ft) from inspection area and will not contact the inspection part. However, the applied loading method may require contact such as a vacuum window placed on the part or a transducer designed to vacuum attach to vehicle surfaces in some applications attached to the part for a mechanical stress of the part. Portable shearography systems for on-vehicle inspection are designed to vacuum attach to vehicle surfaces. Care must be taken to ensure no damage to very thin composite face sheets will be caused by such contact.

4.4.1 Inspection results can be kept as a permanent record and available for future evaluation and presentation. With some software, the data can be stored as a JPG, TIF, or other image format. The format, and the raw data is stored and can be processed and evaluated at any time. Shearography systems utilize tools such as video calipers to allow for rapid defect sizing and area measurement.

FIG. 93 A shearography camera calibration device consists of a means to apply a known deformation to an aluminum flat plate. The flat surface deformation is imaged. This device allows verification of the shearography camera operation, laser stability, and the minimum coherence length.

🖗 E2581 – 14

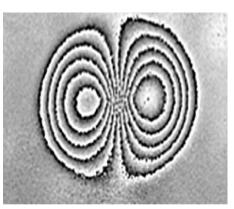


FIG. 34 A phase map shearogram with horizontal shear vector yields a fringe pattern showing the first derivative of the out-of-plane deformation, $\partial w/\partial x$. Using an unwrapping algorithm, the image at right shows the positive (white) and negative (black) slope change.

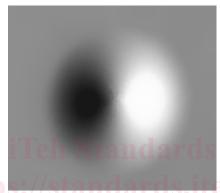


FIG. 45 An unwrapped phase map plots the test part surface deformation derivative without fringes.

4.4.2 Shearography has been used with excellent results for filament-wound pressure vessels, composite and metal face sheet sandwich panels with both honeycomb and foam cores, solid monolithic composite laminates, foam cryogenic fuel tank insulation, bonded cork insulation, aircraft tires, and elastomeric and plastic coatings. Frequently, defects at multiple and far side bond lines can be detected.

4.5 *Limitations and Interferences*—The laser light used in shearography inspection is not a penetrating radiation. Shearography images subsurface flaws indirectly <u>causecausing</u> surface deformations above the flaw, in the range from 1 nm to 500 microns, which are detected by the shearography camera. These deformations are detected by the shearography camera. shearography<u>S</u>-<u>hearography</u> therefore is less sensitive to defects as the defect depth increases. Shearography is applicable to non-brittle materials, where critical flaw size is <u>approximately</u> smaller than the detectable limit. Shearography may not be applicable to materials with very high rigid strength, low or negative coefficient of thermal expansion, or thick face sheet thicknesses.

4.5.1 Ambient <u>light</u>—<u>Light</u>—Ambient light may overpower the low laser power density diffusely reflected from the test part, degrading the shearography data. Most portable equipment includes features to allow testing in full daylight. Production shearography systems operate in test cells or away from high intensity ambient lighting.

4.5.2 *Test part colorPart Color and reflectivity*—<u>Reflectivity</u>—Shearography requires imaging diffuse laser light reflected from the test part surface to create a full field image. The optimal surface is flat white. The worst condition for shearography inspection is a spherical or convoluted, gloss black test part. The glare from a spherical or convoluted surface and the specular reflection from the gloss surface create an extreme intensity distribution that degrades the shearography data. In these worst cases, coatings such as dye-penetrant developer may be applied to reduce glare and increase reflectivity.

4.5.3 Ambient vibration or test part motion—<u>Vibration or Test Part Motion</u>—Ambient vibration or motion can degrade shearography image quality or prevent any useful image from being obtained. Usually vibration or part motion is predominately in one direction. Rotating the shear vector can reduce sensitivity in the direction motion is <u>mostmore</u> prominent. Shimming the test piece and checking for part or camera movement can help eliminate the detrimental effects of motion.

5. Significance and Use

5.1 Shearography is commonly used during product process design and optimization, process control, <u>postafter</u> manufacture inspection, and in service inspection, and can be used to measure static and dynamic axial (tensile and compressive) strain, as well as shearing, Poisson, bending, and torsional strains. The general types of defects detected by shearography include delamination, deformation under load, disbond/unbond, microcracks, and thickness variation.