

## SLOVENSKI STANDARD SIST ISO 3551-2:2000

01-junij-2000

#### CdfYa UnUfcHJM]/g\_c'X]Ua Ublbc'j fHJb'Y'bU'YXfc'!'G]ghYa '5'!'&"XY.'9bchY'j']b ]\

Rotary core diamond drilling equipment -- System A -- Part 2: Inch units

Matériel de forage rotatif au diamant avec carottage - Système A - Partie 2: Unités en inches

(standards.iteh.ai)

Ta slovenski standard je istoveten z: ISO 3551-2:1992

https://standards.iteh.ai/catalog/standards/sist/dd72b7dd-3c99-4b28-

9886-005746e2dc64/sist-iso-3551-2-2000

ICS:

73.100.30 Oprema za vrtanje in Equipment for drilling and

izkopavanje mine excavation

SIST ISO 3551-2:2000 en

SIST ISO 3551-2:2000

# iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 3551-2:2000

SIST ISO 3551-2:2000

## INTERNATIONAL STANDARD

**ISO** 3551-2

> First edition 1992-07-01

### Rotary core diamond drilling equipment -System A -

Part 2:

# iTeh STANDARD PREVIEW

(standards.iteh.ai) Matériel de forage rotatif au diamant avec carottage — Système A —

Partie 2: Unités en inches



#### **Contents**

|            |                                                                                                                                               | Page      |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1          | Scope                                                                                                                                         | 1         |
| 2          | Normative references                                                                                                                          | 1         |
| 3          | Designation                                                                                                                                   | 1         |
| 4          | Materials                                                                                                                                     | 1         |
| 5          | Dimensions and tolerances                                                                                                                     | 2         |
| Ta         | bles                                                                                                                                          |           |
| 1          | Identification symbols iTeh STANDARD                                                                                                          | PREVIEW   |
| 2          |                                                                                                                                               |           |
| 3          | Mechanical properties  System of dimensional identification letters  (standards.i                                                             | ten.41)   |
| 4          | Nomenclature and basic dimensions for drill rods and casings and their related diamond set items https://standards.iteh.ai/catalog/standards. |           |
| 5          | Nomenclature and basic dimensions for core barrels and their 64/sist-isorelated diamond set items                                             |           |
| <b>6</b> t | o 8 "W" design drill rod and coupling                                                                                                         | 8-11      |
| <b>9</b> t | o 14 "W" design flush-jointed casing                                                                                                          | 13-19     |
| <b>9</b> a | and <b>15</b> to <b>19</b> "X" design flush-coupled casing                                                                                    | 13, 20-24 |
| 20         | to 27 "WF" design double-tube core barrel                                                                                                     | 26-34     |
| 28         | to <b>31</b> "WG" design single-tube core barrel                                                                                              | 36-40     |
| 32         | to <b>35</b> "WG" design double-tube core barrel                                                                                              | 43-47     |
| 36         | to 42 "WM" design double-tube core barrel                                                                                                     | 49-57     |
| 43         | and 44 "WT" design single-tube core barrel (BWT, NWT, HWT)                                                                                    | 59, 60    |
|            | and <b>46</b> "WT" design single- and double-tube core barrel (BWT, NWT, HWT)                                                                 | 62, 63    |
| 47         | to <b>50</b> "WT" design double-tube core barrel (BWT, NWT, HWT)                                                                              | 65-69     |
| 51         | to 57 "WT" design double-tube core barrel (RWT, EWT, AWT)                                                                                     | 71-79     |
|            |                                                                                                                                               |           |

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Organization for Standardization Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

#### **Foreword**

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

iTeh STANDARD PREVIEW

International Standard ISO 3551-2 was prepared by Technical Committee ISO/TC 82, *Mining*, Sub-Committee SC 6, *Diamond core drilling equipment*.

ISO 3551 consists of the following parts, under the general title *Rotary core diamond* https://standards.drilling.equipmentard.System/Ab7dd-3c99-4b28-

9886-005746e2dc64/sist-iso-3551-2-2000

- Part 1: Metric units

Part 2: Inch units

#### Introduction

This part of ISO 3551 is published in parallel with ISO 3552-2: 1992, Rotary core diamond drilling equipment — System B - Part 2: Inch units. The two International Standards cover rotary core diamond drilling equipment.

The two systems are referred to as System A and System B but this is not of any significance since the two systems are not intended as replacements for each other. The system to be adopted by the user will depend on his drilling requirements. The two sets of equipment are not interchangeable. System A is characterized by a series of hole sizes oriented to standard pipe sizes, with relatively wide "nesting", relatively greater reduction in hole diameters as the depth of hole increases, and employing relatively heavy casings between hole sizes. System B is characterized by a series of hole sizes specifically designed to "nest" closely, permitting relatively small reductions in hole diameters as the depth of the hole increases, and employing relatively thin casings between hole sizes. It should not be assumed that, for comparable hole sizes, the physical properties of similar elements of the two systems are equal.

NOTE — Another system (System C) is described in ISO 8866: 1991, Rotary core diamond drilling equipment — System C. It is characterized by a series of nesting holes providing small 7dd-3c99-4b28-clearances between the hole wall and the equipment, making it possible to use thin-walled casing tubes. System C is considered to be a separate system to be applied in parallel with systems A and B; it is not interchangeable with these systems.

System A was originally drawn up and standardized in inches, and the conversion was subsequently made into metric units; therefore, in the event of a dispute, the values expressed in this part of ISO 3551 shall be taken as the authentic values.

## Rotary core diamond drilling equipment — System A —

#### Part 2:

Inch units

## iTeh STANDARD PREVIEW

(standards.iteh.ai) ISO inch screw threads — General plan and

#### Scope

selection for screws, bolts and nuts - Diameter range 0.06 to This part of ISO 3551 establishes the nomenclature and laws 3551-6 in 100 down the leading dimensions https://ensure.rinterchangeabilityandards/sist/dd72b7dd-3c99-4b28within the limits of System A of the following equipment 2dc64/sist-1SO 5864: 1978, ISO inch screw threads - Allowances and

a) drill rods and couplings;

- b) casings, casing couplings, casing bits, casing shoes, drive shoes and casing reaming shells;
- c) core barrels, core bits, core lifters and reaming shells.

It specifies the characteristics of a range of equipment for drilling holes having diameters from 1.18 in to 7.88 in and yielding cores having diameters from 0.73 in to 6.5 in.

NOTE - The title of this part of ISO 3551 specifies diamond core drilling, but it is also possible to use other cutting materials.

#### 2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of ISO 3551. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this part of ISO 3551 are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

BS 1580: 1962, Specification for Unified screw threads -Parts 1 and 2: Diameters 1/4 in and larger.

API 7, Rotary shouldered connection, internal flush type (IF).

#### Designation

tolerances.

Items manufactured in accordance with this part of ISO 3551 shall be designated by its number followed by the symbols as listed in table 1.

#### Materials

Materials used in the manufacture of the equipment specified in this part of ISO 3551 shall have the mechanical properties specified in table 2, though for special purposes other materials may be used by agreement between manufacturer and purchaser.

The method by which the mechanical properties of tubes are obtained is left to the manufacturer.

#### 5 Dimensions and tolerances

#### 5.1 Dimensions

All dimensions and tolerances shall be in accordance with tables 4 to 57. All dimensions given in this part of ISO 3551, unless otherwise stated, are in inches (see Introduction).

#### NOTES

- 1 In System A, maximum and minimum values are included for all dimensions.
- 2 All these items have a right-hand thread. Where a left-hand thread is necessary, it is stipulated for each individual case in the footnotes to the figure or to the corresponding table.
- 3 The radius (or chamfer) of the thread crest and the radius in thread root corners are left to the manufacturers (determined by national standards of manufacturers' countries).

#### 5.2 Conformity

When drilling in conformity with American Diamond Core Drill Manufacturers Association (DCDMA) and Canadian Diamond Drilling Association (CDDA) standards, the lengths of rods and casings shall be 120 in, 60 in or 30 in, but in those industries where drilling depths are measured in metres, the rod and casing lengths may be 3 m, 1,5 m or 0,75 m.

#### 5.3 Eccentricity

The eccentricity is defined as the distance between the centres of the outside and inside diameters and shall not exceed 10 % of the nominal wall thickness Q. The eccentricity is calculated according to the formula

$$\frac{Q_{\rm max} - Q_{\rm min}}{2 \ Q_{\rm nom}} \times \ 100$$

where  $Q_{\rm max}$  and  $Q_{\rm min}$  are values of the wall thickness measured in the same section.

#### 5.4 Straightness

When measured over the whole length of the tube by rolling against a straightedge, the maximum deviation shall not be greater than 1 in 1 200.

# iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 3551-2:2000

Table 1 - Identification symbols

| Drill rods (see tables 4, 6, 7 and 8)                                                    | RW  | EW  | AW  | BW  | NW  | HW  |     | _   | _   |             |
|------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| Casing — flush coupled (see tables 4, 9 and 15 to 19)                                    | RX  | EX  | AX  | вх  | NX  | нх  | PX  | SX  | UX  | ZX          |
| Casing — flush jointed (see tables 4 and 9 to 14)                                        | RW  | EW  | AW  | BW  | NW  | HW  | PW  | sw  | UW  | ZW          |
| "WF" design, face discharge core<br>barrel (see figure 6)                                | _   | _   | _   |     |     | HWF | PWF | SWF | UWF | ZWF         |
| "WG" design, internal discharge core barrel (see figures 7 and 8)                        | _   | EWG | AWG | BWG | NWG | HWG | _   | _   | _   | _           |
| "WM" design, internal discharge core barrel*) (see figure 9)                             | _   | EWM | AWM | BWM | NWM |     | _   |     | _   | _           |
| "WT" design, thin wall, internal<br>discharge core barrel (see<br>figures 10, 11 and 12) | RWT | EWT | AWT | BWT | NWT | HWT | _   | _   |     | <del></del> |

# iTeh STANDARD PREVIEW (standards.iteh.ai)

SIST ISO 3551-2:2000

Table 2 - Mechanical properties

| Component                               | Tensile<br>strength,<br>$R_{ m m}$ , min.<br>Ibf/in <sup>2</sup> | <b>Yield stress</b> , $R_{\rm e}$ , min. ${\rm lbf/in^2}$ | Percent elongation after fracture $A_2$ in, min. |
|-----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|
| Parallel wall rods                      | 90 000                                                           | 76 000                                                    | 15                                               |
| Upset or forged end of rod              | 72 000                                                           | 45 000                                                    | 18                                               |
| Casing and casing coupling sizes R to H | 90 000                                                           | 76 000                                                    | 15                                               |
| Casing and casing coupling sizes P to Z | 72 000                                                           | 45 000                                                    | 18                                               |
| Drill-rod coupling and adaptors         | 101 500                                                          | 72 000                                                    | 15                                               |
| All other components                    |                                                                  | Not specified                                             |                                                  |

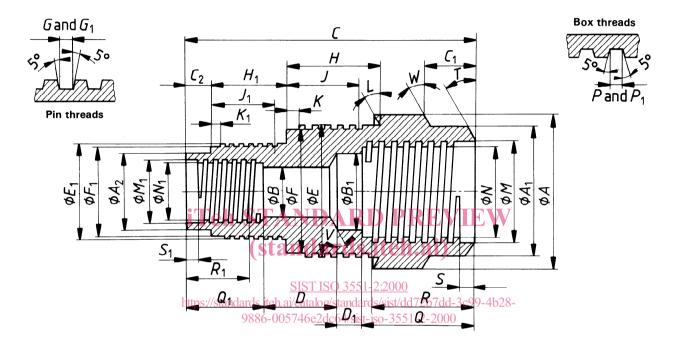



Figure 1 — System of dimensional identification letters

Table 3 - System of dimensional identification letters

| A, A <sub>1</sub> , etc.                | Outside diameters $-A$ being largest; $A_1$ , $A_2$ , etc. progressively smaller         |
|-----------------------------------------|------------------------------------------------------------------------------------------|
| B, B <sub>1</sub> , etc.                | Inside diameters $-B$ being smallest; $B_1$ , $B_2$ , etc. progressively larger          |
| C, C <sub>1</sub> , etc.                | External lengths $-C$ being longest; $C_1$ , $C_2$ , etc. progressively shorter          |
| <i>D</i> , <i>D</i> <sub>1</sub> , etc. | Internal lengths $-D$ being longest; $D_1$ , $D_2$ , etc. progressively shorter          |
| <i>E</i> , <i>E</i> <sub>1</sub> , etc. | Major diameter of pin threads $-E$ being largest; $E_1$ , $E_2$ , etc. smaller           |
| F, F <sub>1</sub> , etc.                | Minor diameter of pin threads $F$ being largest; $F_1$ , $F_2$ , etc. smaller            |
| Thread pitch<br>(Threads per inch)      | Pin threads                                                                              |
| G, G <sub>1</sub> , etc.                | Width at root of pin thread                                                              |
| H, H <sub>1</sub> , etc.                | Length of outside diameter machined for external threading                               |
| J, $J$ <sub>1</sub> , etc.              | Minimum length for full depth of pin threads                                             |
| K, K <sub>1</sub> , etc.                | Length of relief at the starting-point of pin threads                                    |
| L, L <sub>1</sub> , etc.                | Angle of bevel for pin thread shoulder DDD DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD              |
| M, M <sub>1</sub> , etc.                | Major diameter of box threads $-M$ being largest; $M_1$ , $M_2$ , etc. smaller           |
| N, N <sub>1</sub> , etc.                | Minor diameter of box threads $\bigcirc$ $N$ being largest, $N_1$ , $N_2$ , etc. smaller |
| Thread pitch<br>(Threads per inch)      | Box threads SIST ISO 3551-2:2000                                                         |
| P, P <sub>1</sub> , etc.                | pWidthrataroot of box threads standards/sist/dd72b7dd-3c99-4b28-                         |
| Q, Q <sub>1</sub> , etc.                | Length of inside diameter machined for internal threading                                |
| R, R <sub>1</sub> , etc.                | Minimum length for full depth of box threads                                             |
| $S$ , $S_1$ , etc.                      | Length of counterbore at the starting-point of box threads                               |
| <i>T</i> , <i>T</i> <sub>1</sub> , etc. | Angle of bevel for box thread shoulder                                                   |
| <i>U</i> , <i>U</i> <sub>1</sub> , etc. | Included angles — internal and external                                                  |
| V, V <sub>1</sub> , etc.                | Internal angles — not pertaining to threaded connections                                 |
| W, W <sub>1</sub> , etc.                | External angles — not pertaining to threaded connections                                 |
| X                                       | Diamond set dimensions — external diameter                                               |
| Y                                       | Diamond set dimensions — internal diameter                                               |
|                                         |                                                                                          |

 $\mathsf{NOTE}-\mathsf{The}$  following common abbreviations are sometimes used in tables in the English version for the sake of simplicity:

O.D. = outside diameter

I.D. = inside diameter.

| Drill<br>rod | Rod<br>tube    | Rod<br>coupling | Casing<br>flush<br>coupling | Casing<br>tube                | Casing coupling                               | Casing<br>flush<br>jointed    | Cas                      | sing                  | Casing<br>reaming<br>shell       | Casir                           | ng bit         | Casin                   | g shoe         |
|--------------|----------------|-----------------|-----------------------------|-------------------------------|-----------------------------------------------|-------------------------------|--------------------------|-----------------------|----------------------------------|---------------------------------|----------------|-------------------------|----------------|
|              | O.D.           | I.D.            | couping                     | O.D.                          | I.D.                                          |                               | O.D.                     | I.D.                  | Set O.D.                         | Set O.D.                        | Set I.D.       | Set O.D.                | Set I.D.       |
| RW           | 1.098<br>1.093 | 0.416<br>0.401  | RX                          | 1.442<br>1.437                | 1.20<br>1.19                                  | RW                            | 1.442<br>1.437           | 1.20<br>1.19          | not<br>required                  | 1.49<br>1.48                    | 1.005<br>0.995 | 1.49<br>1.48            | 1.188<br>1.183 |
| EW           | 1.380<br>1.375 | 0.447<br>0.432  | EX                          | 1.822<br>1.812                | 1.51<br>1.50                                  | EW                            | 1.822<br>1.812           | 1.51<br>1.50          | 1.895<br>1.885                   | 1.88<br>1.87                    | 1.41<br>1.40   | 1.88<br>1.87            | 1.497<br>1.492 |
| AW           | 1.728<br>1.718 | 0.635<br>0.620  | AX                          | 2.26<br>2.25                  | 1.916<br>1.906                                | AW                            | 2.26<br>2.25             | 1.916<br>1.906        | 2.365<br>2.355                   | 2.35<br>2.34                    | 1.785<br>1.775 | 2.35<br>2.34            | 1.902<br>1.897 |
| BW           | 2.135<br>2.125 | 0.760<br>0.745  | вх                          | 2.885<br>2.875                | 2.385<br>2.375                                | BW                            | 2.885<br>2.875           | 2.385<br>2.375        | 2.985<br>2.975                   | 2.97<br>2.96                    | 2.22<br>2.21   | 2.97<br>2.96            | 2.372<br>2.367 |
| NW           | 2.635<br>2.625 | 1.385<br>1.370  | NX                          | 3.515<br>3.500                | 3.015<br>3.000                                | NW                            | 3.515<br>3.500           | 3.015<br>3.000        | 3.635<br>3.625                   | 3.62<br>3.61                    | 2.845<br>2.835 | 3.62<br>3.61            | 2.997<br>2.987 |
| нw           | 3.515<br>3.500 | 2.390<br>2.375  | нх                          | 4.515<br>http <b>4.500</b> an | 3.952<br><mark>da<b>3</b>.93<b>7</b>eh</mark> | SIST ISO<br>HW<br>ai/catalog/ | 2 45515-2<br>sta41500ds/ | 204.000<br>sis3.98521 | not<br>7 <mark>red</mark> uired9 | 4.632<br>- <mark>44.61</mark> 7 | 3.782<br>3.772 | 4.632<br>4.617          | 3.93<br>3.92   |
|              |                |                 | PX                          | 5.541<br>5.459                | 5:015-0<br>4.865                              | )5746e2dc<br><b>PW</b>        | 645.5411-iso<br>5.459    | 5.015 2-<br>4.865     | 2000ot<br>required               | 5.66<br>5.64                    | 4.640<br>4.625 | 5.66<br>5.64            | 4.860<br>4.845 |
|              |                |                 | sx                          | 6.675<br>6.575                | 6.002<br>5.815                                | sw                            | 6.675<br>6.575           | 6.124<br>5.953        | not<br>required                  | 6.80<br>6.78                    | 5.640<br>5.625 | 6.80<br>6.78            | 5.785<br>5.770 |
|              |                |                 | UX                          | 7.682<br>7.568                | 7.055<br>6.937                                | υw                            | 7.682<br>7.568           | 7.108<br>6.921        | not<br>required                  | 7.815<br>7.785                  | 6.765<br>6.745 | 7.815<br>7. <b>78</b> 5 | 6.915<br>6.895 |
|              |                |                 | zx                          | 8.69<br>8.56                  | 8.108<br>7.937                                | zw                            | 8.69<br>8.56             | 8.207<br>7.992        | not<br>required                  | 8.825<br>8.795                  | 7.765<br>7.745 | 8.825<br>8.795          | 7.915<br>7.895 |

Table 5 - Nomenclature and basic dimensions for core barrels and their related diamond set items

| Core barrel designs |     |     |     | Coring bits                |                                 | Reaming<br>shells                  | Kerf<br>width |                                    |                    | Hole<br>area    | Core-to-<br>hole ratio | Nominal core       | Nominal<br>hole |
|---------------------|-----|-----|-----|----------------------------|---------------------------------|------------------------------------|---------------|------------------------------------|--------------------|-----------------|------------------------|--------------------|-----------------|
| WF                  | WG  | WM  | WT  | Set I.D.                   | Set O.D.                        | Set O.D.                           | in            | in <sup>2</sup>                    | in <sup>2</sup>    | in <sup>2</sup> | %                      | size <sup>1)</sup> | size 1)         |
|                     |     |     | RWT | 0.74<br>0.73               | 1.165<br>1.155                  | 1.18<br>1.17                       | 0.22          | 0.658                              | 0.424              | 1.083           | 39.1                   | 0.73               | 1.18            |
|                     | EWG | EWM |     | 0.85<br>0.84               | 1.475<br>1.465                  | 1.49<br>1.48                       | 0.32          | 1.17                               | 0.561              | 1.732           | 32.4                   | 0.84               | 1.5             |
|                     |     |     | EWT | 0.91<br>0.90               | 1.475<br>1.465                  | 1.49<br>1.48                       | 0.29          | 1.089                              | 0.643              | 1.732           | 37.1                   | 0.9                | 1.5             |
|                     | AWG | AWM |     | 1.19<br>1.18               | 1.88<br>1.87                    | 1.895<br>1.885                     | 0.352         | 1.703                              | 1.103              | 2.805           | 39.3                   | 1.18               | 1.9             |
|                     |     |     | AWT | 1.286<br>1.276             | 1.88<br>1.87                    | 1.895<br>1.885                     | 0.304         | 1.517                              | 1.289              | 2.805           | 45.9                   | 1.27               | 1.9             |
|                     | BWG | вwм |     | 1.66<br>1.6 <mark>5</mark> | 2.35<br>2.34                    | 2.365<br>2.355                     | 0.352         | 2,222                              | 2.151              | 4.374           | 49.1                   | 1.65               | 2.37            |
|                     |     |     | BWT | 1.755<br>1.745             | 2.35<br>2.34                    | 2.365<br>2.355                     | 0.305         | 1.968<br><b>1.9</b> 68             | 2.405              | 4.374           | 55                     | 1.75               | 2.37            |
|                     | NWG | NWM |     | 2.16<br>2.15               | 2.97<br>2.96                    | 2.985<br>2.975                     | 0.412         | 3.326                              | 3.647              | 6.973           | 52.2                   | 2.15               | 3               |
|                     |     |     | NWT | 2.318<br>2.308 S://        | 2.97<br>star <u>zd</u> ggds.ite | 2.985<br>h.a <sub>2</sub> .9751log | /st0r333rds/  | <u>2000</u><br>(sis <b>?dd1</b> 2b | 7d <b>4.202</b> )9 | _4 <u>6</u> 973 | 60                     | 2.3                | 3               |
| HWF                 | HWG |     |     | 3.005<br>2.995             | 3.897 <sup>86</sup> -<br>3.882  | 3.912 <sup>e20</sup><br>3.902      | 0.453         | 0-3551-2-<br>4.919                 | 7.069              | 11.987          | 59                     | 3                  | 3.92            |
|                     |     |     | нwт | 3.192<br>3.182             | 3.897<br>3.882                  | 3.912<br>3.902                     | 0.36          | 4.011                              | 7.976              | 11.987          | 66.5                   | 3.18               | 3.92            |
| PWF                 |     |     |     | 3.635<br>3.620             | 4.735<br>4.715                  | 4.755<br>4.740                     | 0.56          | 7.367                              | 10.335             | 17.702          | 58.4                   | 3.62               | 4.75            |
| SWF                 |     |     |     | 4.447<br>4.432             | 5.735<br>5.715                  | 5.755<br>5.740                     | 0.654         | 10.465                             | 15.478             | 25.945          | 59.7                   | 4.43               | 5.75            |
| UWF                 |     |     |     | 5.515<br>5.495             | 6.855<br>6.825                  | 6.88<br>6.86                       | 0.682         | 13.266                             | 23.801             | 37.068          | 64.2                   | 5.5                | 6.88            |
| ZWF                 |     |     |     | 6.515<br>6.495             | 7.855<br>7.825                  | 7.88<br>7.86                       | 0.682         | 15.411                             | 33.233             | 48.645          | 68.3                   | 6.5                | 7.88            |

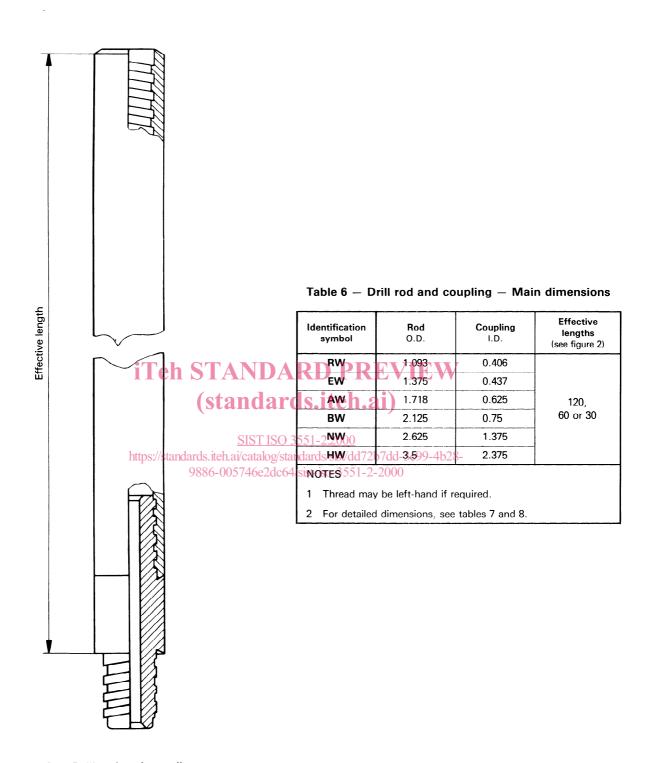



Figure 2 — Drill rod and coupling

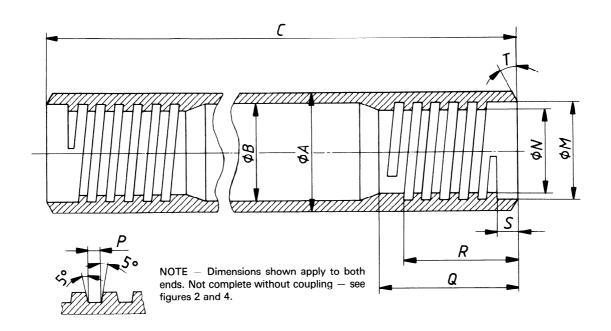



Figure 3 - "W" design drill rod - Drill rod tube (see table 7)

### iTeh STANDARD PREVIEW

(standards.iteh.ai)

Table 7 — "W" design drill rod — Drill rod tube SIST ISO 3551-2:2000

| Dir                | mension      | htt <b>ew</b> //standar | ds.iteh.æi/vatalog/st             | andards/vist/dd72l                   | 7dd-3c <b>eW</b> -4b28- | NW             | HW             |  |
|--------------------|--------------|-------------------------|-----------------------------------|--------------------------------------|-------------------------|----------------|----------------|--|
| A                  | max.<br>min. | 1.098<br>1.093          | 886-005745e2dct<br>1.380<br>1.375 | 4/sist-isp-2851-2-<br>1.728<br>1.718 | 2.135<br>2.125          | 2.635<br>2.625 | 3.515<br>3.500 |  |
| B <sup>1)</sup>    | max.         | 0.719                   | 1                                 | 1.344                                | 1.75                    | 2.25           | 3.062          |  |
| C                  | max.         | 118.92                  | 118.71                            | 118.745                              | 118.285                 | 118.265        | 117.78         |  |
|                    | min.         | 118.86                  | 118.65                            | 118.685                              | 118.225                 | 118.205        | 117.72         |  |
| М                  | max.         | 0.853                   | 1.068                             | 1.380                                | 1.690                   | 2.224          | 3.034          |  |
|                    | min.         | 0.851                   | 1.066                             | 1.378                                | 1.688                   | 2.222          | 3.032          |  |
| N                  | max.         | 0.746                   | 0.943                             | 1.255                                | 1.533                   | 2.036          | 2.844          |  |
|                    | min.         | 0.744                   | 0.941                             | 1.253                                | 1.531                   | 2.034          | 2.842          |  |
| Thread pitch       |              | 0.25                    | 0.333                             | 0.333                                | 0.333                   | 0.333          | 0.333          |  |
| (Threads per inch) |              | (4)                     | (3)                               | (3)                                  | (3)                     | (3)            | (3)            |  |
| P                  | max.         | 0.125                   | 0.166                             | 0.166                                | 0.166                   | 0.166          | 0.166          |  |
|                    | min.         | 0.122                   | 0.162                             | 0.162                                | 0.162                   | 0.162          | 0.162          |  |
| Q                  | min.         | 1.562                   | 1.75                              | 2.125                                | 2.50                    | 3              | 3.562          |  |
| R                  | min.         | 1.437                   | 1.562                             | 1.875                                | 2.25                    | 2.75           | 3.25           |  |
| S                  | max.         | 0.26                    | 0.322                             | 0.385                                | 0.385                   | 0.385          | 0.385          |  |
|                    | min.         | 0.24                    | 0.302                             | 0.365                                | 0.365                   | 0.365          | 0.365          |  |
| T                  |              | 30°                     | 30°                               | 30°                                  | 30°                     | 30°            | 30°            |  |

<sup>1)</sup> The dimension *B* is a maximum and can apply either to upset end rods or parallel wall rods for the RW size only. For all other sizes, this dimension refers to upset end rods only.