
Designation: E2586 − 14 AnAmerican National Standard

Standard Practice for
Calculating and Using Basic Statistics1

This standard is issued under the fixed designation E2586; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This practice covers methods and equations for comput-
ing and presenting basic descriptive statistics using a set of
sample data containing a single variable or two variables. This
practice includes simple descriptive statistics for variable data,
tabular and graphical methods for variable data, and methods
for summarizing simple attribute data. Some interpretation and
guidance for use is also included.

1.2 The system of units for this practice is not specified.
Dimensional quantities in the practice are presented only as
illustrations of calculation methods. The examples are not
binding on products or test methods treated.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

E178 Practice for Dealing With Outlying Observations
E456 Terminology Relating to Quality and Statistics
E2282 Guide for Defining the Test Result of a Test Method

2.2 ISO Standards:3

ISO 3534-1 Statistics—Vocabulary and Symbols, part 1:
Probability and General Statistical Terms

ISO 3534-2 Statistics—Vocabulary and Symbols, part 2:
Applied Statistics

3. Terminology

3.1 Definitions:

3.1.1 Unless otherwise noted, terms relating to quality and
statistics are as defined in Terminology E456.

3.1.2 characteristic, n—a property of items in a sample or
population which, when measured, counted, or otherwise
observed, helps to distinguish among the items. E2282

3.1.3 coeffıcient of determination, n—square of the correla-
tion coefficient, r.

3.1.4 coeffıcient of variation, CV, n—for a nonnegative
characteristic, the ratio of the standard deviation to the mean
for a population or sample

3.1.4.1 Discussion—The coefficient of variation is often
expressed as a percentage.

3.1.4.2 Discussion—This statistic is also known as the
relative standard deviation, RSD.

3.1.5 confidence bound, n—see confidence limit.

3.1.6 confidence coeffıcient, n—see confidence level.

3.1.7 confidence interval, n—an interval estimate [L, U]
with the statistics L and U as limits for the parameter θ and
with confidence level 1 – α, where Pr(L ≤ θ ≤ U) ≥ 1 – α.

3.1.7.1 Discussion—The confidence level, 1 – α, reflects the
proportion of cases that the confidence interval [L, U] would
contain or cover the true parameter value in a series of repeated
random samples under identical conditions. Once L and U are
given values, the resulting confidence interval either does or
does not contain it. In this sense "confidence" applies not to the
particular interval but only to the long run proportion of cases
when repeating the procedure many times.

3.1.8 confidence level, n—the value, 1 – α, of the probability
associated with a confidence interval, often expressed as a
percentage.

3.1.8.1 Discussion—α is generally a small number. Confi-
dence level is often 95 % or 99 %.

3.1.9 confidence limit, n—each of the limits, L and U, of a
confidence interval, or the limit of a one-sided confidence
interval.

3.1.10 correlation coeffecient, n—for a population, ρ, a
demensionless measure of association between two variables X
and Y, equal to the covariance divided by the product of σX

times σY.

3.1.11 correlation coeffecient, n—for a sample, r, the quan-
tity:
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(1)

3.1.12 covariance, n—of a population, cov (X, Y), for two
variables, X and Y, the expected value of (X – µX)(Y – µY).

3.1.13 covariance, n—of a sample; the quantity:

Σ~x 2 x̄!~y 2 ȳ!

~n 2 1!
(2)

3.1.14 dependent variable, n—a variable to be predicted
using an equation.

3.1.15 degrees of freedom, n—the number of independent
data points minus the number of parameters that have to be
estimated before calculating the variance.

3.1.16 estimate, n—sample statistic used to approximate a
population parameter.

3.1.17 histogram, n—graphical representation of the fre-
quency distribution of a characteristic consisting of a set of
rectangles with area proportional to the frequency. ISO 3534-1

3.1.17.1 Discussion—While not required, equal bar or class
widths are recommended for histograms.

3.1.18 independent variable, n—a variable used to predict
another using an equation.

3.1.19 interquartile range, IQR, n—the 75th percentile (0.75
quantile) minus the 25th percentile (0.25 quantile), for a data
set.

3.1.20 kurtosis, γ2, g2, n—for a population or a sample, a
measure of the weight of the tails of a distribution relative to
the center, calculated as the ratio of the fourth central moment
(empirical if a sample, theoretical if a population applies) to the
standard deviation (sample, s, or population, σ) raised to the
fourth power, minus 3 (also referred to as excess kurtosis).

3.1.21 mean, n—of a population, µ, average or expected
value of a characteristic in a population – of a sample, x, sum
of the observed values in the sample divided by the sample
size.

3.1.22 median, X , n—the 50th percentile in a population or
sample.

3.1.22.1 Discussion—The sample median is the [(n + 1) ⁄2]
order statistic if the sample size n is odd and is the average of
the [n/2] and [n/2 + 1] order statistics if n is even.

3.1.23 midrange, n—average of the minimum and maxi-
mum values in a sample.

3.1.24 order statistic, x(k), n—value of the kth observed value
in a sample after sorting by order of magnitude.

3.1.24.1 Discussion—For a sample of size n, the first order
statistic x(1) is the minimum value, x(n) is the maximum value.

3.1.25 parameter, n—see population parameter.

3.1.26 percentile, n—quantile of a sample or a population,
for which the fraction less than or equal to the value is
expressed as a percentage.

3.1.27 population, n—the totality of items or units of
material under consideration.

3.1.28 population parameter, n—summary measure of the
values of some characteristic of a population. ISO 3534-2

3.1.29 prediction interval, n—an interval for a future value
or set of values, constructed from a current set of data, in a way
that has a specified probability for the inclusion of the future
value.

3.1.30 regression, n—the process of estimating parameter(s)
of an equation using a set of date.

3.1.31 residual, n—observed value minus fitted value, when
a model is used.

3.1.32 statistic, n—see sample statistic.

3.1.33 quantile, n—value such that a fraction f of the sample
or population is less than or equal to that value.

3.1.34 range, R, n—maximum value minus the minimum
value in a sample.

3.1.35 sample, n—a group of observations or test results,
taken from a larger collection of observations or test results,
which serves to provide information that may be used as a basis
for making a decision concerning the larger collection.

3.1.36 sample size, n, n—number of observed values in the
sample

3.1.37 sample statistic, n—summary measure of the ob-
served values of a sample.

3.1.38 skewness, γ1, g1, n—for population or sample, a
measure of symmetry of a distribution, calculated as the ratio
of the third central moment (empirical if a sample, and
theoretical if a population applies) to the standard deviation
(sample, s, or population, σ) raised to the third power.

3.1.39 standard error—standard deviation of the population
of values of a sample statistic in repeated sampling, or an
estimate of it.

3.1.39.1 Discussion—If the standard error of a statistic is
estimated, it will itself be a statistic with some variance that
depends on the sample size.

3.1.40 standard deviation—of a population, σ, the square
root of the average or expected value of the squared deviation
of a variable from its mean; —of a sample, s, the square root
of the sum of the squared deviations of the observed values in
the sample divided by the sample size minus 1.

3.1.41 variance, σ2, s2, n—square of the standard deviation
of the population or sample.

3.1.41.1 Discussion—For a finite population, σ2 is calcu-
lated as the sum of squared deviations of values from the mean,
divided by n. For a continuous population, σ2 is calculated by
integrating (x – µ)2 with respect to the density function. For a
sample, s2 is calculated as the sum of the squared deviations of
observed values from their average divided by one less than the
sample size.

3.1.42 Z-score, n—observed value minus the sample mean
divided by the sample standard deviation.

4. Significance and Use

4.1 This practice provides approaches for characterizing a
sample of n observations that arrive in the form of a data set.
Large data sets from organizations, businesses, and govern-
mental agencies exist in the form of records and other
empirical observations. Research institutions and laboratories
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at universities, government agencies, and the private sector
also generate considerable amounts of empirical data.

4.1.1 A data set containing a single variable usually consists
of a column of numbers. Each row is a separate observation or
instance of measurement of the variable. The numbers them-
selves are the result of applying the measurement process to the
variable being studied or observed. We may refer to each
observation of a variable as an item in the data set. In many
situations, there may be several variables defined for study.

4.1.2 The sample is selected from a larger set called the
population. The population can be a finite set of items, a very
large or essentially unlimited set of items, or a process. In a
process, the items originate over time and the population is
dynamic, continuing to emerge and possibly change over time.
Sample data serve as representatives of the population from
which the sample originates. It is the population that is of
primary interest in any particular study.

4.2 The data (measurements and observations) may be of
the variable type or the simple attribute type. In the case of
attributes, the data may be either binary trials or a count of a
defined event over some interval (time, space, volume, weight,
or area). Binary trials consist of a sequence of 0s and 1s in
which a “1” indicates that the inspected item exhibited the
attribute being studied and a “0” indicates the item did not
exhibit the attribute. Each inspection item is assigned either a
“0” or a “1.” Such data are often governed by the binomial
distribution. For a count of events over some interval, the
number of times the event is observed on the inspection
interval is recorded for each of n inspection intervals. The
Poisson distribution often governs counting events over an
interval.

4.3 For sample data to be used to draw conclusions about
the population, the process of sampling and data collection
must be considered, at least potentially, repeatable. Descriptive
statistics are calculated using real sample data that will vary in
repeating the sampling process. As such, a statistic is a random
variable subject to variation in its own right. The sample
statistic usually has a corresponding parameter in the popula-
tion that is unknown (see Section 5). The point of using a
statistic is to summarize the data set and estimate a correspond-
ing population characteristic or parameter.

4.4 Descriptive statistics consider numerical, tabular, and
graphical methods for summarizing a set of data. The methods
considered in this practice are used for summarizing the
observations from a single variable.

4.5 The descriptive statistics described in this practice are:
4.5.1 Mean, median, min, max, range, mid range, order

statistic, quartile, empirical percentile, quantile, interquartile
range, variance, standard deviation, Z-score, coefficient of
variation, skewness and kurtosis, and standard error.

4.6 Tabular methods described in this practice are:
4.6.1 Frequency distribution, relative frequency

distribution, cumulative frequency distribution, and cumulative
relative frequency distribution.

4.7 Graphical methods described in this practice are:
4.7.1 Histogram, ogive, boxplot, dotplot, normal probability

plot, and q-q plot.

4.8 While the methods described in this practice may be
used to summarize any set of observations, the results obtained
by using them may be of little value from the standpoint of
interpretation unless the data quality is acceptable and satisfies
certain requirements. To be useful for inductive generalization,
any sample of observations that is treated as a single group for
presentation purposes must represent a series of measurements,
all made under essentially the same test conditions, on a
material or product, all of which have been produced under
essentially the same conditions. When these criteria are met,
we are minimizing the danger of mixing two or more distinctly
different sets of data.

4.8.1 If a given collection of data consists of two or more
samples collected under different test conditions or represent-
ing material produced under different conditions (that is,
different populations), it should be considered as two or more
separate subgroups of observations, each to be treated inde-
pendently in a data analysis program. Merging of such
subgroups, representing significantly different conditions, may
lead to a presentation that will be of little practical value.
Briefly, any sample of observations to which these methods are
applied should be homogeneous or, in the case of a process,
have originated from a process in a state of statistical control.

4.9 The methods developed in Sections 6, 7, and 8 apply to
the sample data. There will be no misunderstanding when, for
example, the term “mean” is indicated, that the meaning is
sample mean, not population mean, unless indicated otherwise.
It is understood that there is a data set containing n observa-
tions. The data set may be denoted as:

x1, x2, x3 … xn (3)

4.9.1 There is no order of magnitude implied by the
subscript notation unless subscripts are contained in parenthe-
sis (see 6.7).

5. Characteristics of Populations

5.1 A population is the totality of a set of items under
consideration. Populations may be finite or unlimited in size
and may be existing or continuing to emerge as, for example,
in a process. For continuous variables, X, representing an
essentially unlimited population or a process, the population is
mathematically characterized by a probability density function,
f(x). The density function visually describes the shape of the
distribution as for example in Fig. 1. Mathematically, the only
requirements of a density function are that its ordinates be all
positive and that the total area under the curve be equal to 1.

5.1.1 Area under the density function curve is equivalent to
probability for the variable X. The probability that X shall occur
between any two values, say s and t, is given by the area under
the curve bounded by the two given values of s and t. This is
expressed mathematically as a definite integral over the density
function between s and t:

P ~s,X # t! 5 *
s

t

f~x!dx (4)

5.1.2 A great variety of distribution shapes are theoretically
possible. When the curve is symmetric, we say that the
distribution is symmetric; otherwise, it is asymmetric. A
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distribution having a longer tail on the right side is called right
skewed; a distribution having a longer tail on the left is called
left skewed.

5.1.3 For a given density function, f(x), the relationship to
cumulative area under the curve may be graphically shown in
the form of a cumulative distribution function, F(x). The
function F(x) plots the cumulative area under f(x) as x moves
to the right. Fig. 2 shows a symmetric distribution with its
density function, f(x), plotted on the left-hand axis and distri-
bution function, F(x), plotted on the right-hand axis.

5.1.4 Referring to the F(x) axis in Fig. 2, observe that
F(30) = 0.5. The point x = 30 divides the distribution into two
equal halves with respect to probability (50 % on each side of
x). In general, where F(x) = 0.5, we call the point x the median
or 50th percentile of the distribution. In like manner, we may
define any percentile, for example, the 25th or the 90th

percentiles. In general, for 0 < p < 1, a 100p % percentile is a
location point, Qp, that divides the distribution into two parts,
with 100p % lying to the left and (1 – p)100 % lying to the
right.

5.2 A density function is often given as a equation with one
or more parameters, which, when given values, allow the curve
to be drawn.4 For many distributions, two parameters are
sufficient (some have one parameter and others have more than
two). The parameters may also have meaning with respect to
the shape of the curve, the scale used, or some other property
of the curve.

5.2.1 The mean or “expected value” of a distribution,
denoted by the symbol µ, is a parameter that defines the central
location of a distribution. The mean can be thought of as a
“center of gravity” for the distribution. When the distribution is
symmetric, the mean will coincide with the 50th percentile and
occur exactly in the center, splitting the area under the curve
into two equal halves of 0.5 each. For right-skewed
distributions, the mean will occur to the right of the median; for
left-skewed distributions, the mean will occur to the left of the
median.

5.2.2 The standard deviation, denoted by the symbol σ, is
another important parameter in many distributions. It carries
the same units as the variable X, and is also called a scale
parameter. Generally, it is a standard measure of variability.
The larger the value of σ, the greater will be the variation in the
variable X. One of the most important theoretical distributions
in statistics is the normal, or Gaussian, distribution. It arises in
complex phenomena when many uncontrolled factor effects
cause variability and no single effect is of dominating magni-
tude. The normal distribution is a symmetrical, bell-shaped
curve and is completely determined by its mean, µ, and its
standard deviation, σ. The parameter µ locates the center, or
peak, of the distribution, and the parameter σ determines its
spread. The distance from the mean to the inflection point of
the curve (maximum slope point) is σ. This is illustrated in Fig.
3.

5.2.3 The probability of obtaining a value in a given interval
on the measurement scale is the area under the curve over the
interval. This gives some numerical meaning to the parameter
σ. Table 1 gives the normal probability for several selected
intervals in terms of parameters µ and σ. The first two columns
in Table 1 are known as the empirical rule for symmetric and
mound-shaped distributions.

5.2.4 The variance of a distribution, σ2, is the square of the
standard deviation. It is the average value of the quantity
(X – µ)2 in the population. It is the variance that is computed
first, and then the standard deviation is the positive square root
of the variance. For a population specified by a density
function, f(x), the theoretical mean and variance are defined
mathematically as:

µ 5 *
2`

`

xf~x!dx (5)

σ2 5 *
2`

`

~x 2 µ!2 f~x!dx (6)

5.2.5 Here the variable X is assumed to take on all values in
the interval (-∞, +∞), but this need not be the case.

5.3 In addition to the mean and standard deviation, mea-
sures may be theoretically defined that attempt to describe the
general shape of a distribution. Two such quantities are
skewness and kurtosis. For a continuous variable, X, skewness
is defined as the average value of the quantity (X – µ)3/σ3, and

4 In the same way a straight line, y = mx + b, has “parameters” referred to as the
slope, m, and y-intercept, b. Once these parameters are known, the line is completely
known and may be drawn precisely.

FIG. 1 Probability Density Function—Four Examples of Distribu-
tion Shape

FIG. 2 Cumulative Distribution Function, F(x), and Density
Function, f(x) Relationship
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kurtosis as the average value of the quantity (X – µ)4/σ4,
minus 3. Each of these calculations is taken over the popula-
tion. The symbols used for the theoretical skewness and
kurtosis are γ1 and γ2, respectively. For a population specified
by a density function, f(x), the theoretical skewness and
kurtosis are defined mathematically as:

γ1 5

*
2`

`

~x 2 µ!3 f~x!dx

σ3 (7)

γ2 5

*
2`

`

~x 2 µ!4 f~x!dx

σ4 2 3 (8)

5.3.1 Here again, the variable X is assumed to take on all
values in the interval (-∞, +∞).

5.3.2 When a distribution is perfectly symmetric, γ1 = 0.
This is the case for the normal distribution in Fig. 3. If the
distribution has a longer tail on the right, we say that it is right
skewed and γ1 > 0 as in Fig. 4. If the distribution has a longer
tail on the left, we say that it is left skewed and γ1 < 0 as in Fig.
5.

5.3.3 For the normal distribution (Fig. 3), γ2 = 0. The large
base of applications for the normal distribution is the reason for
subtracting 3 in the definition of kurtosis. Subtracting of 3
from (6) makes γ2 = 0 for the normal distribution. For any
distribution the quantity γ2 cannot be less than –2 (1).5 Several
examples of skewness and kurtosis as related to specific
distributions are given in Table 2.

5.3.4 Table 2 shows that there is great variation in both
skewness and kurtosis for several commonly occurring distri-
butions. Also, for some distributions such as the normal,
exponential, and uniform, skewness and kurtosis are constant

and not dependent on the value of any other parameter; for
others, however, skewness and kurtosis are a function of some
other parameter. Here we see that for the Poisson distribution,
both γ1 and γ2 are functions of the mean, λ. For the Weibull
distribution, both γ1 and γ2 are functions of the Weibull shape
parameter β.

5.4 Statistics is the study of the properties, behavior, and
treatment of numerical data. A statistic may be defined as any
function of the data values that originate from a sample. In
many applications in which one has a specific model in mind,
the initial goal is to try to estimate the population (model)
parameters using the sample data. These estimates are called
descriptive statistics. For example, the sample mean and
standard deviation are attempting to estimate the parameters µ
and σ, sample skewness and kurtosis are attempting to estimate
γ1 and γ2, and sample percentiles may be calculated that are
attempting to estimate population percentiles. In some cases,
there may be more than one statistic that may be used for the
same purpose.

5 The boldface numbers in parentheses refer to a list of references at the end of
this standard.

FIG. 3 Normal Distribution and Relationship to
Parameters µ and σ

TABLE 1 Areas Under the Curve for the Normal Distribution

Interval Area Interval Area

µ ± 1σ 0.68270 µ ± 0.674σ 0.50
µ ± 2σ 0.95450 µ ± 1.645σ 0.90
µ ± 3σ 0.99730 µ ± 1.960σ 0.95
µ ± 4σ 0.99994 µ ± 2.576σ 0.99

FIG. 4 Curve with Positive Skewness, γ1 > 0

FIG. 5 Curve with Negative Skewness, γ1 < 0

TABLE 2 Skewness and Kurtosis for Selected Distribution Forms

Distribution Form Skewness Kurtosis

Normal 0 0
Exponential 2 6
Uniform 0 –1.2
PoissonA 1/=λ 1/λ
Student’s tB 0 6/(v – 4)
WeibullC , β = 3.6 0 –0.28
Weibull, β = 0.5 6.62 84.72
Weibull, β = 50.0 –1 1.9
A For the Poisson distribution, λ is the mean.
B For the Student’s t distribution, v is the degrees of freedom. When v # 4, kurtosis
is infinite.
C For the Weibull distribution, β is the shape parameter.
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5.4.1 In addition to estimation, descriptive statistics serve to
organize and give meaning to the raw sample data. By itself a
set of numbers in columnar format may yield little useful
information. The methods of descriptive statistics include
numerical, tabular, and graphical methods that will lead to
great insight for the underlying phenomena being studied.

6. Descriptive Statistics

6.1 Mean or Arithmetic Average—The mean is a measure of
centrality or central tendency of a distribution of observations.
It is most appropriate for symmetric distributions and is
affected by distribution nonsymmetry (shape) and extreme
values. The calculation of the mean is the sum of the n sample
values divided by the number of values, n. This equation is:

x̄ 5
(
i51

n

Xi

n
(9)

6.2 Median or 50th Percentile—The median is a measure of
centrality or central tendency that is generally not affected by
the extremes of the distribution. It is a value that divides the
distribution into two equal parts. For continuous distributions,
50 % will lie to the left and 50 % to the right of the median. To
obtain the 50th percentile of a sample, arrange the n values of
a sample in increasing order of magnitude. The median is the
[(n + 1) ⁄2]th value when n is odd. When n is even, the median
lies between the (n/2)th and the [(n/2) + 1]th values and is not
defined uniquely among the data values. It is then taken to be
the arithmetic average of these two values.

6.2.1 As a measure of central tendency, the median is often
preferred over the average, particularly for quantities that tend
to be skewed in a natural way. Examples include life length of
a product, salary, and other monetary quantities or any quantity
that has a natural lower or upper bound.

6.3 Midrange—Midrange is a measure of central tendency.
It is the average of the largest (max) and smallest (min)
observed values in a sample of n items. It is greatly affected by
any outliers in the data set.

6.4 Max—The largest observed value in a sample of n items.

6.5 Min—The smallest observed value in a sample of n
items.

6.6 Range—The difference, R, between the largest and
smallest observed value in a sample of n items is called the
sample range and is used as a measure of variation. Its equation
is:

R 5 max~x! 2 min~x! (10)

6.6.1 The sample range is useful for assessing variation for
two basic reasons: (1) it is easy to calculate, and (2) it is readily
understood. But caution is advised when the sample size is
modest to large as the min and max then come from the tails of
the distribution and can be extremely variable. The sample
range is therefore directly affected by extreme values. In
general, the standard deviation of a sample is the preferred
measure of variation (see 6.12).

6.6.2 The range is particularly useful for small samples, say
when n = 2 to 12 and there is possibly the burden of
calculation, as the standard deviation is more calculation

intensive and abstract. An important application occurs when
the range is used in quality control applications. For a given
sample size, the sample range can be converted into an
estimate of the standard deviation. This is done by dividing the
range or average range in a group of ranges, by a constant (2),
d2, which is the ratio of expected range in a sample of size n to
standard deviation for a normal distribution. Table 3 contains
values of d2 for sample sizes of 2 through 16.

6.6.3 An important application of this type of estimate for
the standard deviation is in quality control charts. When there
are available several sample ranges, all with the same sample
size, n, we take the average range and divide by the appropriate
constant, d2, from Table 3.

6.7 Order Statistics—When the observations in a sample are
arranged in order of increasing magnitude, the order statistics
are:

x
~1!

# x
~2!

# x
~3!

# … x
~n21!

# x
~n!

(11)

6.7.1 The bracketed subscript notation indicates that the
value is an ordered value. Thus, x(k) is the kth largest value in
n called the kth order statistic of the sample. This value is said
to have a rank of k among the sample values. In a sample of
size n, the smallest observation is x(1) and the largest observa-
tion is x(n). The sample range may then be defined in terms of
the 1st and nth order statistics:

R 5 x
~n!

2 x
~1!

(12)

6.8 Empirical Quantiles and Percentiles—A quantile is a
value that divides a distribution to leave a given fraction, p, of
the observations less than or equal to that value (0 < p < 1). A
percentile is the same value in which the fraction, p, is
expressed as a percent, 100p %. For example, the 0.5 quantile
or 50th percentile (also called the median) is a value such that
half of the observations exceed it and half are below it; the 0.75
quantile or 75th percentile is a value such that 25 % of the
observations exceed it and 75 % are below it; the 0.9 quantile
or 90th percentile is a value such that 10 % of the observations
exceed it and 90 % are below it.

6.8.1 The sample estimate of a quantile or percentile is an
order statistic or the weighted average of two adjacent order
statistics. The ith order statistic in a sample of size n is the
i/(n + 1) quantile or 100i/(n + 1)th percentile estimate.6 The
quantity i/(n + 1) is referred to as the mean rank for the ith order

6 Several alternatives to the mean rank equation i/(n + 1) are available (3),
including the median rank and Kaplan-Meier methods. A equation for the exact
median rank is available but is computationally intensive. The Behnard approxima-
tion equation to the median rank, (i – 0.3) ⁄ (n + 0.4), is widely used. The modified
Kaplan-Meier equation is (i – 0.5) ⁄ n.

TABLE 3 Values of the Constant, d2, for Converting the Sample
Range into an Estimate of Standard DeviationA

n d2 n d2 n d2

2 1.128 7 2.704 12 3.258
3 1.693 8 2.847 13 3.336
4 2.059 9 2.970 14 3.407
5 2.326 10 3.078 15 3.472
6 2.534 11 3.173 16 3.532

A Source: ASTM Manual on Presentation of Data and Control Chart Analysis (2).

E2586 − 14

6

iTeh Standards
(https://standards.iteh.ai)

Document Preview
ASTM E2586-14

https://standards.iteh.ai/catalog/standards/sist/9f796877-bcd8-4e44-896c-578fa48a3614/astm-e2586-14

https://standards.iteh.ai/catalog/standards/sist/9f796877-bcd8-4e44-896c-578fa48a3614/astm-e2586-14


statistic. In repeated sampling, the expected fraction of the
population lying below the ith order statistic in the sample is
equal to i/(n + 1) for any continuous population.

6.8.2 To estimate the 100pth percentile, compute an approxi-
mate rank value using the following equation: i = (n + 1)p. If i
is an integer between 1 and n inclusive, then the 100pth

percentile is estimated as x(i). If i is not an integer, then drop the
fractional portion and keep the integer portion of i. Let k be the
retained integer portion and r be the dropped fractional portion
(note that 0 < r < 1). The estimated 100pth percentile is com-
puted from the equation:

x
~k!

1r~x
~k11!

2 x
~k!! (13)

6.8.2.1 Example. For a sample of size 20, to estimate the
15th percentile. Calculate (n + 1)p = 21(0.15) = 3.15, so k = 3
and r = 0.15. The 15th percentile is estimated as x(3) + 0.15(x(4)

– x(3)).

6.9 Quartile—The 0.25 quantile or 25th percentile, Q1, is the
1st quartile. The 0.75 quantile or 75th percentile, Q3, is the third
quartile. The 50th percentile or Q2, is the 2nd quartile. Note that
the 50th percentile is also referred to as the median.

6.10 Interquartile Range—The difference between the 3rd

and 1st quartiles is denoted as IQR:

IQR 5 Q3 2 Q1 (14)

6.10.1 The IQR is sometimes used as an alternative estima-
tor of the standard deviation by dividing by an appropriate
constant. This is particularly true when several outlying obser-
vations are present and may be inflating the ordinary calcula-
tion of the standard deviation. The dividing constant will
depend on the type of distribution being used. For example, in
a normal distribution, the IQR will span 1.35 standard devia-
tions; then dividing the sample IQR by 1.35 will give an
estimate of the standard deviation when a normal distribution
is used.

6.11 Variance—A measure of variation among a sample of n
items, which is the sum of the squared deviations of the
observations from their average value, divided by one less than
the number of observations. It is calculated using one of the
two following equations:7

s2 5
(
i51

n

~x1 2 x̄!2

n 2 1
5

n(
i51

n

xi
2 2 S (

i51

n

xiD 2

n~n 2 1!
(15)

6.12 Standard Deviation—The standard deviation is the
positive square root of the variance.8 The symbol is s. It is used
to characterize the probable spread of the data set, but this use
is dependent on distribution shape. For mound-shaped distri-
butions that are symmetric, such as the normal form, and
modest to large sample size, we may use the standard deviation
in conjunction with the empirical rule (see Table 1). This rule
states that approximately 68 % of the data will fall within one
standard deviation of the mean; 95 % within two standard

deviations, and nearly all (99.7 %) within three standard
deviations. The approximations improve when the sample size
is very large or unlimited and the underlying distribution is of
the normal form. The rule is applied to other symmetric
mound-shaped distributions based on their resemblance to the
normal distribution.

6.13 Z-Score—In a sample of n distinct observations, every
sample value has an associated Z-score. For sample value, xi,
the associated Z-score is computed as the number of standard
deviations that the value xi lies from the sample mean. Positive
Z-scores mean that the observation is to the right of the
average; negative values mean that the observation is to the left
of the average. Z-scores are calculated as:

Zi 5
~xi 2 x̄!

s
(16)

6.13.1 Sample Z-scores are often useful for comparing the
relative rank or merit of individual items in the sample.
Z-scores are also used to help identify possible outliers in a set
of data. There is a much-used rule of thumb that a Z-score
outside the bounds of 63 is a possible outlier to be examined
for a special cause. Care should be exercised when using this
rule, particularly for very small as well as very large sample
sizes. For small sample sizes, it is not possible to obtain a
Z-score outside the bounds of 63 unless n is at least 11. Eq 17
and Table 4 illustrates this theory:

?Zi? # ~n 2 1!/=n (17)

6.13.2 Table 4 was constructed using the equation for the
maximum (contained in Ref. (4)).

6.13.3 On the other hand, for very large sample sizes, such
as n = 250 or more, it is a common occurrence in practice to
find at least one Z-score outside the range of 63. Where we can
claim a normal distribution is the underlying model, the
approximate probability of at least one Z-score beyond 63 is
approximately 50 % when the sample size is around 250. At
n = 300, it is approximately 55 %. A thorough treatment of the
use of the sample Z-score for detecting possible outlying
observations may be found in Practice E178.

6.14 Coeffıcient of Variation—For a non-negative
characteristic, the coefficient of variation is the ratio of the
standard deviation to the average.

6.15 Skewness, g1—Skewness is a measure of the shape of
a distribution. It characterizes asymmetry or skew in a distri-
bution. It may be positive or negative. If the distribution has a
longer tail on the right side, the skewness will be positive; if
the distribution has a longer tail on the left side, the skewness
will be negative. For a distribution that is perfectly

7 These equations are algebraic equivalents, but the second form may be subject
to round off error.

8 When the denominator of the sample variance is taken as n instead of n – 1, the
square root of this quantity is called the root mean squared deviation (RMS).

TABLE 4 Maximum Z-Scores Attainable for a Selected Sample
Size, n

n 3 5 10 11 15 18

Z(n) 1.155 1.789 2.846 3.015 3.615 4.007
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symmetrical, the skewness will be equal to 0; however, if the
skewness is equal to 0, this does not imply that the distribution
is symmetric.9

6.16 Kurtosis, g2—Kurtosis is a measure of the combined
weight of the tails of a distribution relative to the rest of the
distribution.

6.16.1 Sample skewness and kurtosis are given by the
equations:

g1 5
(
i51

n

~xi 2 x̄!3

n s3 , g2 5
(~xi 2 x̄!4

n s4 2 3 (18)

6.16.2 Alternative estimates of skewness and kurtosis are
defined in terms of k-statistics. The k-statistic equations have
the advantage of being less biased than the corresponding
moment estimators. These statistics are defined by:

k1 5 x̄ , k2 5 s2, k3 5

n(
i51

n

~xi 2 x̄!3

~n 2 1!~n 2 2!
(19)

k4 5

n~n11!(
i51

n

~xi 2 x̄!4

~n 2 1!~n 2 2!~n 2 3!
2

3S (
i51

n

~xi 2 x̄!2D 2

~n 2 2!~n 2 3!
(20)

6.16.3 From the k-statistics, sample skewness and kurtosis
are calculated from Eq 21. Notice than when n is large, g1 and
g2 reduce to approximately:

g1'k3/k2
1.5, g2'k4/k2

2 (21)

6.16.4 One cannot definitely infer anything about the shape
of a distribution from knowledge of g2 unless we are willing to
assume some theoretical distribution such as the Pearson or
other distribution family provides.

6.17 Degrees of Freedom:
6.17.1 The term ‘degrees of freedom’ is used in several

ways in statistics. First, it is used to denote the number of items
in a sample that are free to vary and not constrained in any way
when estimating a parameter. For example, the deviations of n
observations from their sample average must of necessity sum
to zero. This property, that Σ~y 2 ȳ!50, constitutes a linear
constraint on the sum of the n deviations or residuals y1

2 ȳ ,y22 ȳ , ..., yn2 ȳ used in calculating the sample variance,
s25Σ~y 2 ȳ!2⁄~n 2 1!. When any n–1 of the deviations are
known, the nth is determined by this constraint – thus only n–1
of the n sample values are free to vary. This implies that
knowledge of any n–1 of the residuals completely determines
the last one. The n residuals, y12 ȳ , and hence their sum of
squares Σ~yi 2 ȳ!2 and the sample variance Σ~y 2 ȳ!2⁄~n 2 1!
are said to have n–1 degrees of freedom. The loss of one degree
of freedom is associated with the need to replace the unknown
population mean µ by the sample average ȳ. Note that there is
no requirement that Σ~yi 2 µ!50 . In estimating a parameter,
such as a variance as described above, we have to estimate the
mean µ using the sample average ȳ. In doing so, we lose 1
degree of freedom.

6.17.1.1 More generally, when we have to estimate k
parameters, we lose k degrees of freedom. In simple linear
regression where there are n pairs of data (xi, yi) and the
problem is to fit a linear model of the form y5mx1b through
the data, there are two parameters (m and b) that must be
estimated, and we effectively lose 2 degrees of freedom when
calculating the residual variance. The concept is further ex-
tended to multiple regression where there are k parameters that
must be estimated and to other types of statistical methods
where parameters must be estimated.

6.17.2 Degrees of freedom are also used as an indexing
variable for certain types of probability distributions associated
with the normal form. There are three important distributions
that use this concept: the Student’s t and chi-square distribu-
tions both use one parameter in their definition. The parameter
in each case is referred to as its “degrees of freedom.” The F
distribution requires two parameters, both of which are referred
to as “degrees of freedom.” In what follows we assume that
there is a process in statistical control that follows a normal
distribution with mean µ and standard deviation σ.

6.17.2.1 Student’s t Distribution—For a random sample of
size n where ȳ and s are the sample mean and standard
deviation respectively, the following has a Student’s t distribu-
tion with n–1 degrees of freedom:

t 5
x̄ 2 µ

s ⁄=n
(22)

The t distribution is used to construct confidence intervals
for means when Σ is unknown and to test a statistical
hypothesis concerning means, among other uses.

6.17.2.2 The Chi-Square Distribution—For a random
sample of size n where s is the sample standard deviation, the
following has a chi-square distribution with n–1 degrees of
freedom:

q 5
~n 2 1!s2

σ2 (23)

The chi-square distribution is used to construct a confidence
interval for an unknown variance; in testing a hypothesis
concerning a variance; in determining the goodness of fit
between a set of sample data and a hypothetical distribution;
and in categorical data analysis, among other uses.

6.17.2.3 The F Distribution—There are two independent
samples of sizes n1 and n2. In the most common variant the
samples are selected from normal distributions having the same
standard deviation. In that case the following has an F
distribution with n1–1 and n2–1 degrees of freedom:

F~n1 2 1 , n2 2 1! 5
s 1

2

s 2
2 (24)

Both degrees of freedom are required to use the F distribu-
tion. It is common to specify one as associated with the
numerator and one as associated with the denominator. If the
two populations being sampled have differing standard
deviations, say σ1 for population 1 and σ2 for population 2,
then the F ratio above is multiplied by σ2

2⁄σ1
2. The F distribution

is used to construct confidence intervals for a ratio of two
variances, and in hypothesis testing associated with designed

9 For example, an F distribution having four degrees of freedom in the
denominator always has a theoretical skewness of 0, yet this distribution is not
symmetric. Also, see Ref. (5), Chapter 27, for further discussion.
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experiments, among other uses.

6.18 Statistics for Use with Attribute Data:
6.18.1 Case 1—Binomial simple count data occurs in an

inspection process in which each inspection unit is classified
into one of two dichotomous categories. The population being
sampled is either very large relative to the sample or a process
(essentially unlimited). Often we use “0” or “1” to stand for the
categories. Other designations are: conforming and noncon-
forming unit or nondefective and defective unit. In all cases,
there is a sample size, n, and the interest lies in the fraction of
nonconforming units in the sample. This fraction is an estimate
of the probability, p, that a future randomly selected unit will
be a nonconforming unit. Often, the population being sampled
is conceptual—that is, a process with some unknown noncon-
forming fraction, p.

6.18.1.1 If an indicator variable, X, is defined as X = 1 when
the unit is nonconforming and 0 if not, then the statistic of
interest may be defined as:

p̂ 5
(
i51

n

Xi

n
(25)

6.18.1.2 In some applications, such as in quality control,
there are k samples each of size n. Each sample gives rise to a
separate estimate of p. Then the statistic of interest may be
defined as:

p̄ 5
(
i51

k

Pi

k
(26)

6.18.1.3 The bar over the “p” indicates that this is an
average of the sample fractions which estimates the unknown
probability p. The binomial distribution is the basis of the p and
np charts found in classical quality control applications.

6.18.2 Case 2—Poisson Simple Count Data—If an inspec-
tion process counts the number of nonconformities or “events”
over some fixed inspection area (either a fixed volume, area,
time, or spatial interval), the estimate of the mean is identical
to the equation in 6.1. We refer to this as the estimate of the
mean number of events expected to occur within the interval,
volume, area, weight, or time period sampled. The Poisson
distribution is the basis of the c and u charts found in classical
quality control applications.

6.19 Standard Error Concept—When a statistic is calcu-
lated from a set of sample data there is usually some population
parameter that is of interest and for which the statistic or some
simple function therefore serves as the estimate of the param-
eter. We know that when a second sample is taken, we will not
get the same result as the first sample provided. This is because
the sample values are different every time a sample is taken.
Different sample values will necessarily give us different
values for the statistic. A statistic is a random variable subject
to variation in repeated sampling. The standard error of the
statistic is the standard deviation of the statistic in repeated
sampling.

6.19.1 In using or reporting any statistic, it is good practice
to also report a standard error for that statistic. This gives the
user some idea of the uncertainty in the results being stated.

For example, suppose that a sample mean and standard
deviation of 29.7 and 2.8 is obtained from a sample of n = 20.
Suppose further that the sample data originate from a process
so that the population is conceptually unlimited. It may be
shown that the standard error of the mean (sample average) is
specified as:

se~ x̄! 5
σ

=n
'

s

=n
5

2.8

=20
5 0.63 (27)

6.19.1.1 Here the quantity σ represents the unknown popu-
lation standard deviation, s is the sample standard deviation
and estimates σ, and n is the sample size. In this example, the
estimated standard error of the mean is approximately 0.63.

6.19.2 Any standard error calculation or equation will
typically be a function of the sample size (as it is for the mean)
as well other items such as the kind of distribution being
sampled. Tables 5 and 6 contain a short list of commonly
required statistics along with associated standard errors

6.19.3 Many other equations for finding or approximating
the standard error for a given statistic are available in the
literature. When a statistic is complicated to the point at which
a closed-form solution or even an approximate equation may
be very difficult to find, computer-intensive methodology can
be used. Monte Carlo simulation methods are very useful for
such purposes. In particular, the technique known as a para-
metric bootstrap (6) uses the original data to generate many
new samples (the so-called bootstrap samples) each of the
same size n as the original sample. For each bootstrap sample,
the statistic of interest is again calculated and saved to a file.

TABLE 5 Commonly Required Statistics and Their Standard
Errors—Data Is of the Variable Type and Population Is Normal

NOTE 1—For skewness and kurtosis,A the range for the sample size is
n = 5 through 1000. The constant c4 is a function of the sample size n and
is widely available in tables. Alternatively, this approximate equation may
be used. See Table 7 and Ref. (5).

Skewness, g1 = k3 / k2
1.5, let v = ln(n)

ln(se) = 0.54 – 0.3718v – 0.01144 v2

Kurtosis, g2 = k4 / s4 , let v = ln(n)
ln(se) = 1.641 – 0.6752v – 0.05498 v2 – 0.004492v3

Statistic Estimated Standard Error

Mean

x̄ 5

o
i51

n

xi

n

ses x̄d 5
s

œn

Variance

s2 5

o
i51

n

sxi 2 xd2

n 2 1

sess2d 5 Œ 2s4

n 2 1

Standard Deviation
sessd 5 sœ1 2 c4

2

s 5!o
i51

n

sxi 2 xd2

n 2 1

<
sœ8n 2 7

4n 2 3

A The standard error equations for these statistics were determined using a Monte
Carlo simulation.
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Following this process, the standard deviation is calculated for
the set of bootstrap estimates, and this number is taken as the
standard error.

6.20 Confidence Intervals—A confidence interval for an
unknown population parameter is constructed using sample
data and provides information about the uncertainty of an
estimate of that parameter in the form of a probability
statement. The confidence interval consists of a set of plausible
values for the parameter, bounded by a lower limit (L) and an
upper limit (U). The limit values that make up the confidence
interval are referred to as confidence limits.

6.20.1 Since the limits of a confidence interval are sample
statistics, they will vary in repeated sampling. A confidence
interval is said to include, cover or capture the parameter of
interest if the upper and lower confidence limits fall on
opposite sides of the true parameter value. The probability of
this coverage is called the confidence coefficient or confidence
level. The term “confidence” refers to the long run fraction of
such intervals that would actually cover the parameter in
repeating the experiment a large number of times for a fixed
value of the parameter. The confidence level is calculated
theoretically or by means of computer simulations. Confidence
levels are most often expressed as percentages, up to but not
including 100 %. Commonly used confidence coefficients are
90 %, 95 %, and 99 %. Generally, the greater the confidence
level, the wider (more conservative) will be the confidence
interval.

6.20.2 An approximate confidence interval for an unknown
parameter, θ, can be expressed in terms of the standard error:

θ̂6z12α/2 3 se~ θ̂! (28)

The quantity θ̂ is a statistic, the estimator of the unknown
parameter θ; se(θ̂) is an estimate of the standard error of θ̂; and
the multiplier z1-α/2 is the 1 – α ⁄2 quantile selected from the
standard normal distribution (5.3) for a (1 – α) two sided
confidence interval. For example, when 95 % confidence level
is used (α = 0.05), z0.975 = 1.960; when 99 % confidence level
is used, z0.995 = 2.576.

6.20.3 To construct a confidence interval for an unknown
proportion, p, using the observed sample proportion p̂ from a
sample of size n, the general approximate Eq 28 may be used
with the standard error as specified in Table 6. For the
approximation to be adequate, np̂ and n(1 – p̂) should be 5 or
more. The equation for this interval is:

p̂6z12α/2 =p̂~1 2 p̂!/~n 2 1! (29)

6.20.4 When the parameter is the mean of a normal
distribution, use the standard error estimate in Eq 27 or Table
5 and a multiplier based on Student’s t distribution. This gives
a theoretically exact confidence interval when the population
distribution is a normal curve (5.2.2):

x̄6t12α/2, df s/=n (30)

t1-α/2, df is the 1-α/2 quantile of Student’s t distribution with
df degrees of freedom when the standard deviation s has df
degrees of freedom.

6.20.4.1 Example—For a sample of size 20, having sample
mean 29.7 and sample standard deviation 2.8 (6.19.1), a 95 %
confidence interval for the mean is:

29.762.093 3 2.8/=20

or 28.4 to 31.0. The multiplier 2.093 comes from a table of
Student’s t distribution. The confidence interval may be ex-
pressed as (28.4, 31.0) or as 29.7 6 1.3.

6.20.5 One-sided confidence intervals are used when only
an upper or a lower bound on the plausible range of values of
the parameter is of interest. For example, when the character-
istic of interest is the strength of a material, a lower confidence
limit can be provided. If the characteristic is a proportion of
defective units, and interest is on how large this might be, an
upper confidence limit can be provided.

6.20.5.1 Example—The lower one-sided 95 % confidence
limit for the example of (6.19.1) and (6.20.4.1) is

x̄ 2 t12α , df s/=n 5 29.7 2 1.729 3 2.8/=20

or 28.6.
6.20.6 Procedures for calculating confidence intervals from

sample data are available in textbooks and in the literature for
parameters of a variety of distribution functions and for a
variety of scenarios (for example, single parameter, difference
between two parameters, ratio of two parameters, etc.). Widely
available published tables are used to construct confidence
intervals for cases involving the binomial, Poisson, exponential
and normal distributions. For the common cases as well as
others, tables of Student’s t, the chi-square and F distributions
are required for construction of the interval. Generally, the
coverage probability depends on the correctness of the as-
sumed distribution from which the data have arisen.

TABLE 6 Commonly Required Statistics and Their Standard
Errors—Data Is of the Attribute Type

Statistic Estimated Standard Error

Binomial Distribution, Mean

p̂ 5

o
i51

n

xi

n

sesp̂d 5 Œp̂s1 2 p̂d
n 2 1

Poisson Distribution, Mean

λ̂ 5

o
i51

n

xi

n

ses λ̂d 5 œλ̂

TABLE 7 Values for the Constant, c4, Used in Calculating the
Standard Error of a Sample Standard Deviation When Sampling

from a Normal Distribution

n c4 n c4 n c4

11 0.975350 25 0.989640
2 0.797885 12 0.977559 30 0.991418
3 0.886227 13 0.979406 35 0.992675
4 0.921318 14 0.980971 40 0.993611
5 0.939986 15 0.982316 45 0.994335
6 0.951533 16 0.983484 50 0.994911
7 0.959369 17 0.984506 75 0.996627
8 0.965030 18 0.985410 100 0.997478
9 0.969311 19 0.986214 150 0.998324

10 0.972659 20 0.986934 200 0.998745
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