This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: C128 - 12 C128 - 15

Standard Test Method for Density, Relative Density (Specific Gravity), Gravity) and Absorption of Fine Aggregate¹

This standard is issued under the fixed designation C128; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of the average density of a quantity of fine aggregate particles (not including the volume of voids between the particles), the relative density (specific gravity), gravity) and the absorption of the fine aggregate. Depending on the procedure used, the density, in kg/mfine aggregates. The 3^{-} (lb/ft 3^{-}) is expressed as oven-dry (OD), saturated-surface-dry (SSD), or as apparent density. Likewise, relative density (specific gravity), a dimensionless quality, is expressed as OD, SSD, oven-dry (OD), saturated-surface-dry (SSD), or as apparent relative density (apparent specific (specific gravity)). The OD density and OD relative density are is determined after drying the aggregate. The SSD density, SSD-relative density, density and absorption are determined after soaking the aggregate in water for a prescribed duration.

1.2 This test method is used to determine the density of the essentially solid portion of a large number of aggregate particles and provides an average value representing the sample. Distinction is made between the density of aggregate particles as determined by this test method, and the bulk density of aggregates as determined by Test Method C29/C29M, which includes the volume of voids between the particles of aggregates.

1.2 This test method is not intended to be used for lightweight aggregates that comply with Specification C332 Group I aggregates.

1.3 The values stated in SI units are to be regarded as the standard for conducting the tests. The test results for density shall be reported in either SI units or inch-pound units, as appropriate for the use to be made of the results.standard. No other units of measurement are included in this standard.

1.4 The text of this test method references notes and footnotes which that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of this test method.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

C29/C29M Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate

C70 Test Method for Surface Moisture in Fine Aggregate

C117 Test Method for Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregates by Washing

C125 Terminology Relating to Concrete and Concrete Aggregates

C127 Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate

C330 Specification for Lightweight Aggregates for Structural Concrete

C332 Specification for Lightweight Aggregates for Insulating Concrete

C188 Test Method for Density of Hydraulic Cement

C566 Test Method for Total Evaporable Moisture Content of Aggregate by Drying

C670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials

¹ This test method is under the jurisdiction of ASTM Committee C09 on Concrete and Concrete Aggregatesand is the direct responsibility of Subcommittee C09.20 on Normal Weight Aggregates.

Current edition approved April 1, 2012 Jan. 1, 2015. Published May 2012 March 2015. Originally approved in 1936. Last previous edition approved in 20072012 as C128-07a:-12. DOI: 10.1520/C0128-12:10.1520/C0128-15.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

🕼 C128 – 15

C702 Practice for Reducing Samples of Aggregate to Testing Size

C1252 Test Methods for Uncompacted Void Content of Fine Aggregate (as Influenced by Particle Shape, Surface Texture, and Grading) (Withdrawn 2015)³

D75 Practice for Sampling Aggregates

D854 Test Methods for Specific Gravity of Soil Solids by Water Pycnometer

2.2 AASHTO Standard:

AASHTO No. T 84 Specific Gravity and Absorption of Fine Aggregates⁴

3. Terminology

3.1 Definitions:

3.1.1 *absorption, n*—the increase in mass of aggregate due to water penetrating into the pores of the particles, during a prescribed period of time but not including water adhering to the outside surface of the particles, expressed as percentage of the dry mass.

3.1.2 density, n-the mass per unit volume of a material, expressed as kilograms per cubic metre (pounds per cubic foot).

3.1.2.1 *density (OD), n*—the mass of oven-dry aggregate particles per unit volume of aggregate particles, including the volume of permeable and impermeable pores within particles, but not including the voids between the particles.

3.1.2.2 *density* (SSD), *n*—the mass of saturated-surface-dry aggregate per unit volume of the aggregate particles, including the volume of impermeable pores and permeable, water-filled pores within the particles, but not including the voids between the particles.

3.1.2.3 apparent density, n-the mass per unit volume of the impermeable portion of the aggregate particles.

3.1.3 oven-dry (OD), adj—related to aggregate particles, the condition in which the aggregates have been dried by heating in an oven at 110 ± 5 °C for sufficient time to reach a constant mass.

3.1.4 *relative density (specific gravity), n*—the ratio of the density of a material to the density of water at a stated temperature; the values are dimensionless.

3.1.4.1 *relative density (specific gravity), (OD), n*—the ratio of the density (OD) of the aggregate to the density of water at a stated temperature.

3.1.4.2 relative density (specific gravity), (SSD), n—The ratio of the density (SSD) of the aggregate to the density of water at a stated temperature.

3.1.4.3 apparent relative density (apparent specific gravity), n—the ratio of the apparent density of aggregate to the density of water at a stated temperature.

3.1.5 saturated-surface-dry (SSD), adj-related to aggregate particles, the condition in which the permeable pores of aggregate particles are filled with water to the extent achieved by submerging in water for the prescribed period of time, but without free water on the surface of the particles.

3.1.6 For definitions of other terms related to aggregates see Terminology C125.

3.1 Definitions—For definitions of terms used in this standard, refer to Terminology C125.

4. Summary of Test Method

4.1 A sample of aggregate is immersed in water for 24 ± 4 h to essentially fill the pores. It is then removed from the water, the water is dried from the surface of the particles, and the mass determined. Subsequently, the sample (or a portion of it) is placed in a graduated container and the volume of the sample is determined by the gravimetric or volumetric method. Finally, the sample is oven-dried and the mass determined again. Using the mass values thus obtained and formulas in this test method, it is possible to calculate density, relative density (specific gravity), gravity) and absorption.

5. Significance and Use

5.1 Relative density (specific gravity) is the ratio of mass of an aggregate to the mass of a volume of water equal to the volume of the aggregate particles – also referred to as the absolute volume of the aggregate. It is also expressed as the ratio of the density of the aggregate particles to the density of water. Distinction is made between the density of aggregate particles and the bulk density of aggregates as determined by Test Method C29/C29M, which includes the volume of voids between the particles of aggregates.

5.2 Relative density (specific gravity) is the characteristic generally used for calculation of is used to calculate the volume occupied by the aggregate in various mixtures containing aggregate including portlandhydraulic cement concrete, bituminous

³ The last approved version of this historical standard is referenced on www.astm.org.

⁴ Available from American Association of State Highway and Transportation Officials (AASHTO), 444 N. Capitol St., NW, Suite 249, Washington, DC 20001, http://www.transportation.org.

concrete, and other mixtures that are proportioned or analyzed on an absolute volume basis. Relative density (specific gravity) is also used in the computation of voids in aggregate in Test Method C29/C29M and in Test Method C1252. Relative density (specific gravity) (SSD) is used in the determination of surface moisture on fine aggregate by displacement of water in Test Method C70. Relative density (specific gravity) (SSD) is used if the aggregate is wet, in a saturated surface-dry condition, that is, if its absorption has been satisfied. Conversely, Alternatively, the density or relative density (specific gravity) (OD) is used for computations when the aggregate is dry or assumed to be dry.

5.3 Apparent density and apparent relative density (apparent specific (specific gravity) pertain to the solid material making up the constituent particles not including the pore space within the particles that is accessible to water. This value is not widely used in construction aggregate technology.

5.4 Absorption values are used to calculate the change in the mass of an aggregate material due to water absorbed in the pore spaces within the constituent particles, compared to the dry condition, whenif it is deemed that the aggregate has been in contact with water long enough to satisfy most of the absorption potential. The laboratory standard for absorption is that obtained after submerging dry aggregate for a prescribed period of time. Aggregates mined from below the water table commonly have a moisture content greater than the absorption determined by this test method, if used without opportunity to dry prior to use. Conversely, some aggregates whichthat have not been continuously maintained in a moist condition until used are likely to contain an amount of absorbed moisture less than the 24-h soaked condition. For an aggregate that has been in contact with water and that has free moisture on the particle surfaces, the percentage of free moisture is determined by deducting the absorption from the total moisture content determined by Test Method C566 by drying.

5.5 The general procedures described in this test method are suitable for determining the absorption of aggregates that have had conditioning other than the 24-h soak, such as boiling water or vacuum saturation. The values obtained for absorption by other test methods will be different than the values obtained by the prescribed 24-h soak, as will the density (SSD) or relative density (specific gravitygravity) (SSD).

6. Apparatus

6.1 *Balance*—A balance or scale having a capacity of 1 kg or more, sensitive to 0.1 g or less, and accurate within 0.1 % of the test load at any point within the range of use for this test method. Within any 100-g range of test load, a difference between readings shall be accurate within 0.1 g.

6.2 Pycnometer (for Use with Gravimetric Procedure)—A flask or other suitable container into which the fine aggregate test sample can be readily introduced and in which the volume content can be reproduced within \pm 0.1 cm³. The volume of the container filled to mark shall be at least 50 % greater than the space required to accommodate the test sample. A volumetric flask of 500-cm³ capacity or a fruit jar fitted with a pycnometer top is satisfactory for a 500-g test sample of most fine aggregates.

6.3 *Flask (for Use with Volumetric Procedure)*—A Le Chatelier flask as described in Test Method C188 is satisfactory for an approximately 55-g test sample. at approximately 55-g test sample.

6.4 Mold and Tamper for Surface Moisture Test—The metal mold shall be in the form of a frustum of a cone with dimensions as follows: 40 ± 3 -mm inside diameter at the top, 90 ± 3 -mm inside diameter at the bottom, and 75 ± 3 mm in height, with the metal having a minimum thickness of 0.8 mm. The metal tamper shall have a mass of 340 ± 15 g and a flat circular tamping face 25 ± 3 mm in diameter.

6.5 Oven—An oven of sufficient size, capable of maintaining a uniform temperature of 110 ± 5 °C (230 ± 9 °F).

7. Sampling

7.1 Sample the aggregate in accordance with Practice D75. Thoroughly mix the sample and reduce it to obtain a test specimen of approximately 1 kg using the applicable procedures described in Practice C702.

8. Preparation of Test Specimen

8.1 Place the test specimen in a suitable pan or vessel and dry in the oven to constant mass at a temperature of 110 ± 5 °C (230 ± 9 °F). Allow it to cool to comfortable handling temperature (approximately 50 °C), cover with water, either by immersion or by the addition of at least 6 % moisture to the fine aggregate, and permit to stand for 24 \pm 4 h. When Specification C330 or Specification C332 Group II lightweight aggregates are used, immerse the aggregate in water at room temperature for a period of 72 \pm 4 h, stirring for at least one minute every 24 h.

8.1.1 When the absorption and relative density (specific gravity) values are to be used in proportioning concrete mixtures in which the aggregates will be in their naturally moist condition, the requirement in 8.1 for initial drying is optional, and, if the surfaces of the particles in the sample have been kept continuously wet until tested, the requirement in 8.1 for 24 ± 4 h soaking or 72 ± 4 h is also optional.

NOTE 1—Values for absorption and for relative density (specific gravity) (SSD) may be significantly higher for aggregate not oven dried before soaking than for the same aggregate treated in accordance with 8.1.

C128 – 15

8.2 Decant excess water with care to avoid loss of fines (see also Appendix X1), spread the sample on a flat nonabsorbent surface exposed to a gently moving current of warm air, and stir frequently to secure homogeneous drying. Employ mechanical aids such as tumbling or stirring to assist in achieving the saturated surface-dry condition, if desired. Continue this operation until the test specimen approaches a free-flowing condition. Follow the procedure in 8.3 to determine if surface moisture is still present on the constituent fine aggregate particles. Make the first trial for surface moisture when there is still some surface water in the test specimen. Continue drying with constant stirring and test at frequent intervals until the test indicates that the specimen has reached a surface-dry condition. If the first trial of the surface moisture test indicates that moisture is not present on the surface, it has been dried past the saturated surface-dry condition. In this case, thoroughly mix a few millilitres of water with the fine aggregate and permit the specimen to stand in a covered container for 30 min. Then resume the process of drying and testing at frequent intervals for the onset of the surface-dry condition.

8.3 *Test for Surface Moisture*—Hold the mold firmly on a smooth nonabsorbent surface with the large diameter down. Place a portion of the partially dried fine aggregate loosely in the mold by filling it to overflowing and heaping additional material above the top of the mold by holding it with the cupped fingers of the hand holding the mold. Lightly tamp the fine aggregate into the mold with 25 light drops of the tamper. Start each drop approximately 5 mm above the top surface of the fine aggregate. Permit the tamper to fall freely under gravitational attraction on each drop. Adjust the starting height to the new surface elevation after each drop and distribute the drops over the surface. Remove loose sand from the base and lift the mold vertically. If surface moisture is still present, the fine aggregate will retain the molded shape. Slight slumping of the molded fine aggregate indicates that it has reached a surface-dry condition.

8.3.1 Some fine aggregate with predominately angular-shaped particles or with a high proportion of fines does not slump in the cone test upon reaching the surface-dry condition. Test by dropping a handful of the fine aggregate from the cone test onto a surface from a height of 100 to 150 mm, and observe for fines becoming airborne; presence of airborne fines indicates this problem. For these materials, consider the saturated surface-dry condition as the point that one side of the fine aggregate slumps slightly upon removing the mold.

NOTE 2-The following criteria have also been used on materials that do not readily slump:

(1) Provisional Cone Test—Fill the cone mold as described in 8.3 except only use 10 drops of the tamper. Add more fine aggregate and use 10 drops of the tamper again. Then add material two more times using 3 and 2 drops of the tamper, respectively. Level off the material even with the top of the mold, remove loose material from the base; and lift the mold vertically.

(2) Provisional Surface Test—If airborne fines are noted when the fine aggregate is such that it will not slump when it is at a moisture condition, add more moisture to the sand, and at the onset of the surface-dry condition, with the hand lightly pat approximately 100 g of the material on a flat, dry, clean, dark or dull nonabsorbent surface such as a sheet of rubber, a worn oxidized, galvanized, or steel surface, or a black-painted metal surface. After 1 to 3 s, remove the fine aggregate. If noticeable moisture shows on the test surface for more than 1 to 2 s then surface moisture is considered to be present on the fine aggregate.

(3) Colorimetric procedures described by Kandhal and Lee, Highway Research Record No. 307, p. 44.

(4) For reaching the saturated surface-dry condition on a single size material that slumps when wet, hard-finish paper towels can be used to surface dry the material until the point is just reached where the paper towel does not appear to be picking up moisture from the surfaces of the fine aggregate particles.

9. Procedure

9.1 Test by either the gravimetric procedure in 9.2 or the volumetric procedure in 9.3. Make all determinations of mass to 0.1 g.

9.2 Gravimetric (Pycnometer) Procedure:

9.2.1 Partially fill the pycnometer with water. Introduce into the pycnometer 500 ± 10 g of saturated surface-dry fine aggregate prepared as described in Section 8, and fill with additional water to approximately 90 % of capacity. Agitate the pycnometer as described in 9.2.1.1 (manually) or 9.2.1.2 (mechanically).

9.2.1.1 Manually roll, invert, or agitate the pycnometer (or use a combination of these actions) to eliminate visible air bubbles.

NOTE 3—About 15 to 20 min are normally required to eliminate the air bubbles by manual methods. Dipping the tip of a paper towel into the pycnometer has been found to be useful in dispersing the foam that sometimes builds up when eliminating the air bubbles. Optionally, a small amount of isopropyl alcohol may be used to disperse the foam.

9.2.1.2 Mechanically agitate the pycnometer by external vibration in a manner that will not degrade the sample. A level of agitation adjusted to just set individual particles in motion is sufficient to promote de-airing without degradation. A mechanical agitator shall be considered acceptable for use if comparison tests for each six-month period of use show variations less that the acceptable range of two results (d2s) indicated in Table 1 from the results of manual agitation on the same material.

9.2.2 After eliminating all air bubbles, adjust the temperature of the pycnometer and its contents to 23.0 ± 2.0 °C if necessary by partial immersion in circulating water, and bring the water level in the pycnometer to its calibrated capacity. Determine the total mass of the pycnometer, specimen, and water.

9.2.3 Remove the fine aggregate from the pycnometer, dry in the oven to constant mass at a temperature of 110 ± 5 °C (230 \pm 9 °F), cool in air at room temperature for $1 \pm \frac{1}{2}$ h, and determine the mass.