INTERNATIONAL STANDARD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION •МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ •ORGANISATION INTERNATIONALE DE NORMALISATION

Photographic grade boric acid — Specification

Acide borique de qualité photographique - Spécifications

First edition - 1976-05-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3628:1976 https://standards.iteh.ai/catalog/standards/sist/39581a73-583f-4aab-9161-b0d859a3f859/iso-3628-1976

UDC 771.7:661.651.004.11

Descriptors: photographic materials, boric acids, materials specifications, tests.

Ref. No. ISO 3628-1976 (E)

0 3628-1976

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committee. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 3628 was drawn up by Technical Committee ISO/TC 42, Photography, and circulated to the Member Bodies in September 1974.

It has been approved by the Member Bodies of the following countries:

Australia

Italy

ISQuike8:1976

Austria

b0d859a3**d**8**\$**9**A**so-3628-1976

httpap/artandards.iteh.ai/catalog/stuniterdleking/dom/1a73-583f-4aab-9161-

Belgium

Mexico

U.S.S.R.

Bulgaria

Romania

Canada

South Africa, Rep. of

Yugoslavia

France

Spain

Germany

Sweden

No Member Body expressed disapproval of the document.

© International Organization for Standardization, 1976 ●

Printed in Switzerland

Photographic grade boric acid — Specification

0 INTRODUCTION

This International Standard is one of a series of specifications for photographic grade chemicals which are commonly used in the processing of sensitized photographic materials. These specifications have been prepared to establish criteria of purity which will provide a practical and economical grade and prevent possible faulty processing which might be caused by chemicals of inferior quality, and to furnish manufacturers, suppliers, and processors with reliable and readily available specifications for photographic chemicals of satisfactory quality.

Photographic grade chemicals are those which meet the requirements specified in the appropriate International Standards. These specifications set out purity standards and state the limiting concentrations and test methods for certain inert or photographically harmful impurities that may be present.

Originally these specifications were based on aknownso-36 requirements for black-and-white photographic processing, but increased attention has been paid to the requirements of colour processing. Experience to date indicates that chemicals meeting these specifications are satisfactory for colour processes in general use.

0.1 Specification requirements

These specifications set out chemical and physical requirements. While it is recognized that the ultimate criterion of the quality of a photographic chemical is its successful performance in a photographic test, present knowledge indicates that, from a practical standpoint, chemical and physical methods of testing are generally adequate. The photographic industry has accumulated a comprehensive collection of such chemical tests for impurities. These tests, which correlate with objectionable photographic effects, have been drawn upon in the formulation of these specifications. Chemical tests are generally more sensitive, less variable, and less costly than photographic tests.

Purity requirements have been set as low as possible, consistent with the objectives mentioned. If, however, the purity of a commonly available grade of chemical exceeds photographic processing requirements, and if there is no economic penalty in its use, the purity requirements have been set to take advantage of the higher-quality materials.

Every effort has been made to keep the number of requirements in each specification to a minimum. The requirements generally include only those photographically harmful impurities which, through experience, are likely to be present. Inert impurities are limited to amounts which will not unduly reduce the assay.

Assay procedures have been included in all cases where a satisfactory method is available. An effective assay requirement serves not only as a safeguard of chemical purity, but also as a valuable complement to the identity test. All assays are intended to be made on undried samples in view of the fact that photographic processing chemicals are normally used "as received".

identity tests have been included in the specifications wherever a possibility exists that another chemical or a mixture of chemicals could pass the other tests.

https://standards.itch.ai/catalog/standards/sist/All Stequirements listed in clause 3 of each specification ications were based/domaknownso-362 are mandatory. The physical appearance of the material and-white photographic processing, has been paid to the requirements not part of the requirements.

0.2 Selection of test methods

Efforts have been made to employ tests which are capable of being run in any normally equipped laboratory and, wherever possible, to avoid tests which require highly specialized equipment or techniques. Instrumental methods have been specified only as alternative methods or alone in those cases where no other satisfactory method is available.

While the test methods set out in the specifications are recommended, the use of other equally reliable methods is allowed. In case of disagreement in results, the method called for in the specification shall prevail. Where a requirement states "to pass test", however, alternative methods shall not be used.

0.3 Reagents

An effort has been made to minimize the number of reagents employed in this series of specifications. The methods of preparation and of standardization have been included in all cases where these are not common, or where a preferred method is desirable.

Details of reagent preparation and standardization are included in each specification in which the reagent is called for so that each specification shall be self-sufficient.

1,---

1 SCOPE AND FIELD OF APPLICATION

This International Standard specifies the purity requirements of, and test methods for, photographic grade boric acid.

2 CHARACTERISTICS

Boric acid is in the form of colourless glittering flaky crystals or crystalline white powder, of chemical formula H₃BO₃ and relative molar mass 61,83.

3 REQUIREMENTS

31 Assav

The assay shall be not less than 99.0 % (m/m), expressed as H₃BO₃, when determined by the method described in 4.1.

3.2 Appearance of solution

An aqueous solution shall be clear and free from sediment other than a slight flocculence, when examined by the method described in 4.2.

3.3 Residue after ignition

The residue after ignition shall be not greater than 0.3 % (m/m), when determined by the method described in 4.3.

3.4 Heavy metals content

The heavy metals content, expressed as lead (Pb), shall be 362 not greater than 20 mg/kg. https://standards.iteh.ai/catalog/standa

Conformity with this requirement shall be determined by 859/is The assay, 7 expressed as a percentage by mass of boric acid the limit test described in 4.4, when the colour produced in the test solution shall be not greater than that produced in the control solution.

3.5 Iron content

The iron content, expressed as iron (Fe), shall be not greater than 20 mg/kg.

Conformity with this requirement shall be determined by the limit test described in 4.5, when the colour produced in the test solution shall be not greater than that produced in the control solution.

4 TEST METHODS

Reagents used in the tests shall be recognized reagent grade chemicals normally used for careful analytical work. In all the directions the acids and ammonia solutions referred to shall be of full strength unless dilution is specified. Dilution is specified in terms of molar concentration (molarity)1) when standardization of the reagent is required. When dilution is indicated as (1 + x), it means that 1 volume of the reagent or strong solution is added to x volumes of distilled water.

Distilled water, or water otherwise produced of at least equal purity, shall be used whenever water is required.

4.1 Assav

4.1.1 Reagents

4.1.1.1 Mannitol, solid.

4.1.1.2 Sodium hydroxide. 1 M standard volumetric solution.

4.1.1.3 Phenolphthalein indicator, ethanol/water solution, 5 g/l.

Dissolve 5 g of phenolphthalein in 500 ml of ethanol and add 500 ml of water, with constant stirring. Filter if necessary.

4.1.2 Apparatus

Ordinary laboratory apparatus and

4.1.2.1 Burette, 50 ml capacity, conforming to class A of ISO/R 385.

4.1.3 Procedure

Weigh, to the nearest 0,001 g, a test portion of about 2 g of the laboratory sample and dissolve in about 50 ml of water. Dissolve 20 g of the mannitol (4.1.1.1) in this solution and then titrate with the sodium hydroxide solution (4.1.1.2), using the phenolphthalein solution (4.1.1.3) as indicator.

4.1.4./3. Galculation 31-4aab-9161-

(H₃BO₃), is given by the formula

where

(standar

V is the volume, in millilitres, of the sodium hydroxide solution (4.1.1.2) used for the titration;

T is the exact molarity of the sodium hydroxide solution (4.1.1.2);

m is the mass, in grams, of the test portion.

4.2 Appearance of solution test

Prepare a 50 g/l solution of the laboratory sample and examine for clarity and sediment.

NOTE - Slight warming may be necessary for solution.

4.3 Determination of residue after ignition

4.3.1 Reagents

4.3.1.1 Methanol.

4.3.1.2 Hydrochloric acid solution, dilute (1 + 3).

¹⁾ $1 \text{ mol/l} = 1 \text{ kmol/m}^3 = 1 \text{ mol/dm}^3 = 1 \text{ M}$

4.3.1.3 Sulphuric acid solution, ρ approximately 1,84 ml.

4.3.2 Apparatus

Ordinary laboratory apparatus and

4.3.2.1 Platinum crucible, 50 ml capacity.

4.3.2.2 Muffle furnace, capable of being controlled at 600 ± 50 °C.

4.3.3 Procedure

Weigh, to the nearest 0,01 g, a test portion of about 2 g of the powdered laboratory sample into the previously weighed platinum crucible (4.3.2.1), add 25 ml of the methanol (4.3.1.1) and 5 drops of the hydrochloric acid solution (4.3.1.2). Evaporate to dryness on a steam-bath in a fume cupboard. Add a further 15 ml of the methanol and 3 drops of the hydrochloric acid solution and evaporate to dryness. Then add 2 to 3 drops of the sulphuric acid solution (4.3.1.3) and heat on a sand-bath until the evolution of fumes ceases. Ignite the residue in the furnace (4.3.2.2), controlled at 600 ± 50 °C, for 4 h. Cool in a desiccator and weigh the crucible and its contents to the nearest 1 mg.

4.3.4 Calculation

The residue after ignition, expressed as a percentage by mass, is given by the formula

 m_3 htt m_1 standords.iteh.ai/catalog/standards/sis $m_2 - m_1$ b0d859a3f859/iso-36

where

 m_1 is the mass, in grams, of the crucible,

 m_2 is the mass, in grams, of the crucible and test portion;

 m_3 is the mass, in grams, of the crucible and residue.

4.4 Limit test for heavy metals

4.4.1 Reagents

4.4.1.1 Hydrochloric acid solution, dilute (1 + 99).

4.4.1.2 Heavy metals, standard solution.

Dissolve a soluble lead salt in water to give a solution containing 10 mg of lead per 1 000 ml.

4.4.1.3 Water, saturated at room temperature with hydrogen sulphide.

4.4.2 Apparatus

Ordinary laboratory apparatus and

4.4.2.1 Two matched Nessler cylinders, 50 ml capacity.

4.4.3 Procedure

Weigh, to the nearest 0,01 g, a test portion of about 2 g of the laboratory sample, transfer to one of the Nessler cylinders (4.4.2.1), dissolve in 40 ml of warm water, and add 1 ml of the hydrochloric acid solution (4.4.1.1). Transfer 4 ml of the standard heavy metals solution (4.4.1.2) to the other Nessler cylinder and add 2 ml of the hydrochloric acid solution. To each, add 5 ml of the hydrogen sulphide water (4.4.1.3), dilute to 50 ml and mix well.

Compare, in the Nessler cylinders, the colours produced in the test and control solutions.

4.5 Limit test for iron

4.5.1 Reagents

4.5.1.1 Hydrochloric acid solution, dilute (1+99).

4.5.1.2 Acetate buffer solution, pH 5,0.

teh.ai) 4.5.1.3 Iron, standard solution.

Dissolve 23 g of anhydrous sodium acetate in 58 ml of 2 M acetic acid solution and dilute to 1 000 ml with water. Adjust the final pH to 5.0 ± 0.1 with glacial acetic acid or 100 g/l sodium hydroxide solution.

Dissolve a soluble iron(III) salt in water to give a solution containing 10 mg of iron(III) per 1 000 ml.

4.5.1.4 1,10-Phenanthroline reagent solution.

Thoroughly mix equal volumes of a 1 g/l aqueous solution of 1,10-phenanthroline, a 100 g/l aqueous solution of hydroxylammonium chloride and the acetate buffer solution (4.5.1.2).

4.5.2 Apparatus

Ordinary laboratory apparatus and

4.5.2.1 Two matched Nessler cylinders, 50 ml capacity.

4.5.3 Procedure

Weigh, to the nearest 0,01 g, a test portion of about 2 g of the laboratory sample, transfer to one of the Nessler cylinders (4.5.2.1) and dissolve in 40 ml of warm water. Then transfer 4 ml of the standard iron solution (4.5.1.3) to the other Nessler cylinder, add 2 ml of the hydrochloric acid solution (4.5.1.1) and 30 ml of water. Add to each cylinder 5 ml of the 1,10-phenanthroline reagent solution (4.5.1.4) and allow them to stand for 10 min. Then dilute each to 50 ml and mix well.

Compare, in the Nessler cylinders, the colours produced in the test and control solutions.

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3628:1976 https://standards.iteh.ai/catalog/standards/sist/39581a73-583f-4aab-9161-b0d859a3f859/iso-3628-1976

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3628:1976 https://standards.iteh.ai/catalog/standards/sist/39581a73-583f-4aab-9161-b0d859a3f859/iso-3628-1976

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3628:1976 https://standards.iteh.ai/catalog/standards/sist/39581a73-583f-4aab-9161-b0d859a3f859/iso-3628-1976