INTERNATIONAL STANDARD

Unplasticized poly(vinyl chloride) (PVC-U) pipes and fittings for soil and waste discharge (low and high temperature) systems inside buildings - Specifications

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75% of the member bodies casting a vote.
iTeh STANDARD PREVIEW
International Standard ISO 3633 was prepared by Technical Committee ISO/TC 138, Plastics pipes, fittings and valves for the ffansport of muids?

Annexes A, B, C, D, E, F and G form an integral part of this International Standard. Annex H is for information only.
https:/standards.iteh.ai/catalog/standards/sist/89084458-9f36-44fe-9e97-81a09dla6713/iso-3633-1991

[^0]
Unplasticized poly(vinyl chloride) (PVC-U) pipes and fittings for soil and waste discharge (low and high temperature) systems inside buildings - Specifications

1 Scope

This International Standard lays down the specifications for unplasticized poly(vinyl chloride) (PVC-U) pipes and fittings, with nominal outside diameters of 16 mm to 400 mm , intended for domestic installations inside buildings for
origin, provided chemical and temperature resistance is taken into account.

2 Normative references

The following standards contain provisions which through reference in this text, constitute provisions ofthis international Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to a) soil and waste discharge pipe lines (including the S. It agreements based on this International Standard ventilation of these pipes), and are encouraged to investigate the possibility of apiplying the most recent editions of the standards in-
b) internal rainwater pipess.//standards.iteh.ai/catalog/standards/sist for the transportation of domestic waste waters ${ }^{1 /}$ (low and high temperature).

NOTE 1 For other uses of these pipes and fittings, reference should be made to the relevant section of ISO/TR 7024, to the manufacturer's instructions and to national regulations.

There are two types of pipes and fittings (type A and type B) for such discharge systems:
-- type A, which shall be used only for primary and secondary ventilation pipework and internal rainwater applications;

- type B, which shall be used for soil and waste discharge systems and may also be used for any type A application.

This International Standard may also be applied to pipes, fittings and joints for discharges of industrial
dicated deetow 4 Members of IEC and ISO maintain registers of currently valid International Standards.

ISO 161-1:1978, Thermoplastics pipes for the transport of fluids - Nominal outside diameters and nominal pressures --. Part 1: Metric series.

ISO 265-1:1988, Pipes and fittings of plastics materials - Fittings for domestic and industrial waste pipes - Basic dimensions: Metric series - Part 1: Unplasticized poly(vinyl chloride) (PVC-U).

ISO 580:1990, Injection-moulded unplasticized poly(vinyl chloride) (PVC-U) fittings - Oven test Test method and basic specifications.

ISO 1043-1:1987, Plastics - Symbols - Part 1: Basic polymers and their special characteristics.

ISO 2505:1981, Unplasticized polyvinyl chloride (PVC) pipes -- Longitudinal reversion - Test methods and specification.

[^1]ISO 2507:1982, Unplasticized polyvinyl chloride (PVC) pipes and fittings - Vicat softening temperature - Test method and specification

ISO 3127:1980, Unplasticized polyvinyl chloride (PVC) pipes for the transport of fluids - Determination and specification of resistance to external blows.

ISO 3606:1976, Unplasticized polyvinyl chloride (PVC) pipes - Tolerances on outside diameters and wall thicknesses.

ISO 4435:1991, Unplasticized poly(vinyl chloride) (PVC-U) pipes and fittings for buried drainage and sewerage systems - Specifications.

ISO/TR 7024:1985, Above-ground drainage - Recommended practice and techniques for the installation of unplasticized polyvinyl chloride (PVC-U) sanitary pipework for above-ground systems inside buildings.

ISO 8283-1:1991, Plastics pipes and fittings -- Dimensions of sockets and spigots for discharge systems inside buildings - Part 1: Unplasticized poly(vinyl chloride) (PVC-U) ${ }^{\circ}$ and Ehlorinated poly(vinyl chloride) (PVC-C).

3 Material

3.1 The material shall consist substantially of poly(vinyl chloride) (PVC) to which may be addged only those additives that are needed to facilitate the manufacture of pipes and fittings having good mechanical strength and opacity.
3.2 The use of the manufacturer's own clean rework material from pipes and fittings made to this International Standard is permissible No other rework material shall be used
3.3 Pipes and fittings shall be sufficiently stabilized against thermal ageing and ultraviolet (UV) light.

NOTE 2 Resistance to UV light is under study within ISO/TC 138.

4 Geometrical characteristics

4.1 Pipe dimensions

Pipe dimensions shall be in accordance with ISO 161-1 and ISO 3606.

4.1.1 Nominal outside diameter and wall thickness

Nominal outside diameters and wall thicknesses are classified into two size ranges: a primary size range (see table 1 and table 2) and a secondary size range (see table 3 and table 4). If dimensions other than those given for the primary size range are necessary, they shall be selected from the secondary size range.

4.1.1.1 Primary size range

Table 1 - Nominal outside diameter - Primary size range

Dimensions in millimetres

40	50	75	90	110	125	160

Table 2 - Wall thickness - Primary size range
Dimensions in millimetres

4.1.1.2 Secondary size range

Table 3 - Nominal outside diameter - Secondary size range

Dimensions in millimetres

16	20	25	32	63	200	250	315	400

Table 4 - Wall thickness - Secondary size range
Dimensions in millimetres

Nominal outside diameter	Minimum wall thickness $e_{\text {min }}$	
	Type A	Type B
16	-	1,8
20	-	2,3
25	-	3,2
32	1,8	3,2
63	1,8	3,2
200	3,9	4,9
250	4,9	6,2
315	6,2	7,7
400	7,8	9,8

4.1.2 Length of pipe

The nominal length of a pipe shall be measured as shown in figure 1. For pipes with sockets, the nominal length is considered to be the distance between the ends minus the socket depth. For practical reasons, this length is measured to the outside of the socket.

4.2 Dimensions of fittings

4.2.1 Basic dimensions

(standards.i

Basic dimensions of fittings strhalldbengiven by theards/sistrured iñ plasticsfoner-than PVC-U manufacturer, and the dimensions shaly begdefined/iso-3633-1991
as in ISO 265-1.

4.2.2 Wall thickness

The wall thickness shall be at least equal to the minimum wall thickness of the pipe of the same size unless otherwise specified in 4.3.2.

4.3 Socket and spigot dimensions of pipes and fittings

4.3.1 Basic dimensions

Basic dimensions of sockets and spigots shall be as given in ISO 8283-1 for nominal diameters up to 200 mm and as given in ISO 4435 for nominal diameters greater than 200 mm .

4.3.2 Wall thickness of sockets on pipes and fittings

The minimum wall thickness of sockets for joints of the primary size range shall meet the requirements of table 5 (see figure 2 for an example).
tact with the liquid, i.e. beyond the designated seal point, thinner walls are permitted.
Table 5 - Minimum wall thickness of sockets on pipes and fittings - Primary size range

Nominal outside diameter	e_{2} min.			e_{3} min.	
D	Type A	Type B	Type A	Type B	
40	1,6	2,9	1	2,4	
50	1,6	2,9	1	2,4	
75	1,6	2,9	1	2,4	
90	1,7	2,9	1,1	2,4	
110	2	2,9	1,2	2,4	
125	2,3	2,9	1,4	2,4	
160	2,9	3,6	1,8	3	

When a seal ring is firmly retained by means of a seal ring retaining component (see figure 3 for an example), the wall thickness of the socket in this area and that of the seal ring retaining component may be added together to achieve the required e_{3} dimension provided that they are not separated by the seal ring.

The minimum values of e_{3} given in table 5 apply only to those parts of the ring seal zone where the liquid in the pipe comes into contact with the fitting. For those parts of the fitting that do not come into con-

Seal ring retaining components may be manufac-

In all cases, the components shall meet the functional test requirements specified in clause 7 .

5 Mechanical test requirements

5.1 Pipes

Either the impact test or the tensile test as specified in 5.1.1 or 5.1.2 may be selected to satisfy the test requirements.

5.1.1 Impact strength (alternative to 5.1.2)

The true impact rate (TIR) shall not exceed 10% at $20^{\circ} \mathrm{C}$ when tested in accordance with ISO 3127.

5.1.2 Tensile strength (alternative to 5.1.1)

When determined in accordance with a method agreed on between the interested parties, the maximum tensile strength plotted during the test shall not be less than 45 MPa and the elongation at break shall not be less than 80%.

Figure 1 Nominal pipe length and definitions W
(standards.iteh.ai)

ISO 3633:1991

Figure 2 - Socket details

Figure 3 - Example of a seal retaining cap

5.2 Fittings - Impact strength

Five fitlings of each diameter and type shall be conditioned for at least 30 min at a temperature of $0^{\circ} \mathrm{C}$ $\pm 1^{\circ} \mathrm{C}$. Within 10 s after the conditioning treatment, each fitting shall be dropped freely in various positions on to a flat concrete floor from the heights specified below:

- for $D) \leqslant 75 \mathrm{~mm}$, drop from ($2 \underset{0}{4.0 .1}) \mathrm{m}$;

6.2 Fittings

6.2.1 Vicat softening temperature

The Vicat softening temperature shall be not less than $77^{\circ} \mathrm{C}$ when determined in accordance with ISO 2507.

6.2.2 Oven test

- for $D>75 \mathrm{~mm}$, drop from $\binom{110,12}{0} \mathrm{~m}$.

If none of the specimens is damaged in the test, the S.iUSO 580.)
fittings shall be accepted. If one fitting is damaged,
the test shall be repeated with five further fittings 33:1991
None of these last five fittingsashallshe damaged NOTES

81a09d1a6713/iso-3633-1991

3 This is an optional test, to be carried out only if required in a national standard, but is mandatory for fittings with sealing caps or rings and for fittings fabricated from pipes.

4 In the context of this test, "damage" means any visible split or any complete breakage in the body of the fitting. Surface scratches, scuffing, or chipping of edges which may occur in the test does not constitute damage.

6 Physical test requirements

6.1 Pipes

6.1.1 Vicat softening temperature

The Vicat softening temperature shall be not less than $79^{\circ} \mathrm{C}$ when determined in accordance with ISO 2507.

6.1.2 Longitudinal reversion

The longitudinal reversion shall not exceed 5% when determined in accordance with ISO 2505.

7.1 Watertightness

Joints between pipes and fittings, pipes and pipes, and fittings and fittings shall not leak when tested in accordance with annex B.

7.2 Airtightness

Joints between pipes and fittings, pipes and pipes, and fittings and fitlings shall remain airtight when tested in accordance with annex C.

7.3 Elevated-temperature cycling test

The test assembly used shall meet the requirements given in either annex D or annex E. Where national standards specify which of these two tests is to be used, they shall be complied with.

Only type B pipes and fittings are required to satisfy these requirements.

Annex F specifies the information to be provided and the symbols to be used in the test report.

7.4 Axial shrinkage

The axial shrinkage shall not exceed 2% when determined in accordance with annex G.

NOTE 5 This is an optional test to carried out only if required by a national standard.

8 Elastomeric sealing elements and adhesives

All elastomeric sealing elements and adhesives shall be as specified by the manufacturer of the fittings.

The sealing elements and adhesives shall not have a detrimental effect on the pipes or fittings, i.e. they shall not cause the test assembly to fail the functional tests.

- manufacturing information, in plain text or in code, providing traceability of the production period to within the year and month and the production site if the manufacturer is producing at several national or international sites;
- the number of this International Standard.

Pipes with a nominal laying length up to and including z_{2} metres shall be marked at least once. Pipes with a nominal laying length greater than z_{2} shall be marked at intervals of z_{3} metres at the most. The values of z_{2} and z_{3} shall be as specified by the authorities in each country.

10.2 Fittings

Fittings shall be marked with at least the following information:

- manufacturer's name or trade mark;
- fitting material (may be given on packing only in the case of PVC, provided this information is not required on each artiole by national authorities); tings shall be smooth and free from grooving. blis tering and any other surface defect. The materials ${ }^{\text {shall not contain visible impurities or pores. Pipe }}$ norenat diameter of fitting, ends shall be cleanly cut, and the ends of pipes and fittings shall be square with the axis of the pipe. ISO 3633:1classification (where applicable);
https://standards.iteh.ai/catalog/standards/sist/89084458-9f36-44fe-9e97-
81a09d1a6713/iso-380lues of angles, if any:

10 Marking

Pipes, fittings and sealing rings shall be marked clearly and indelibly so that legibility is maintained for the life of the products under normal conditions of storage, weather and use.

The markings may be integral with the product or on a label. The markings shall not damage the product.

10.1 Pipes

Pipes shall be marked with at least the following information:

- manufacturer's name or trade mark;
- pipe material;
- nominal diameter of pipe;
- nominal wall thickness of pipe;
- manufacturing information, in plain text or in code, providing traceability of the production period to within the year and month and the production site if the manufacturer is producing at several national or international sites (may be given on packing only, provided this information is not required on each article by national authorities);
- the number of this International Standard (may be given on packing only, provided this information is not required on each article by national authorities).

10.3 Sealing rings

Sealing rings shall be marked with at least the following information:

- manufacturer's name or trade mark;
- nominal dimension of ring;
- manufacturing information, in plain text or in code, providing traceability of the production period to within the year and the production site if manufacturer is producing at several national or international sites.

No markings are required on sealing rings which are moulded to pipes or fittings or any other marked component.

10.4 Designation of the material (in

 accordance with ISO 1043-1)PVC-U

iTeh STANDARD PREVIEW (standards.iteh.ai)

https://standards.iteh.ai/catalog/standards/sist/89084458-9f36-44fe-9e97-
81a09d1a6713/iso-3633-1991

Annex A

(normative)

Definition of domestic waste waters

domestic waste waters: Waters discharged and diverted into the sewage system, in particular
a) waters that have become altered in composition and have become fouled (or impure) by being used domestically (including waters from flushing systems containing human excrement and, if necessary or authorized, animal excrement, and
waters from normal households, offices, old people's homes, hotels, schools, etc.), and
b) rainwater, if a separate discharge channel is not available.

Such waters never have a temperature exceeding $100^{\circ} \mathrm{C}$ continuously for more than 2 min and have a pH value normally in the range pH 2 to pH 12 .

Annex B

iTeh STA (normative) PREVIEW
 Watertightness testh.ai)

B. 1 Apparatus

SO ${ }^{36} \mathbf{B}^{3} \mathbf{3}^{991}$ Procedure

https://standards.iteh.ai/catalog/standards/sist/89084458-9f36-44fe-9e97-
B.1.1 Apparatus, to which the test assembly can be connected, allowing a controlled water pressure to be applied.

B.1.2 Precision pressure gauge.

B. 2 Test assembly

Pipes, fittings and joints in accordance with this International Standard in all other respects shall be used.

The connection (joint) shall be made in accordance with the manufacturer's instructions.
iffthe joint lo be tested permits deflection, perform the test with the test assembly under the maximum possible deflection of the axis without forcing.

Connect the lest assembly (see clause B.2) to the precision pressure gauge (B.1.2). By allowing water to enter the test assembly, gradually increase the internal pressure from 0 MPa to $0,05 \mathrm{MPa}$ (0 bar to 0,5 bar) over a period of not greater than 15 min and maintain the pressure of $0,05 \mathrm{MPa}(0,5$ bar) for at least 15 min .

B. 4 Test requirements

The test requirement (see 7.1) shall be fulfilled for all types of test assembly, including those combining minimum spigot ends and maximum sockets.

Annex C

(normative)

Airtightness test

C. 1 Apparatus

C.1.1 Apparatus, to which the test assembly can be connected, allowing a controlled air pressure to be applied

A suitable apparatus is shown in figure C.1.

C.1.2 Precision pressure gauge or manometer.

C. 2 Test assembly

Pipes, fittings and joints in accordance with this International Standard in all other respects shall be used. ITeh STANDARDbubbles. VIHW

The connection (joint) shall be made (in accordance with the manufacturer's instructions.

The test assembly shall consist of a specimem of pipe mounted in two clampent blocks Seal one end of the pipe with a plug that has a combined water and air inlet. Insert any fitting or joint into the open end of the pipe. The joint or fitting shall then be sealed at all open ends with plugs, one of which has a water outlet and shut-off valve mounted centrally in the sealing plug

C. 3 Procedure

C.3.1 Apply a strong solution of soapy water or detergent around the annular space between the mouth of the fitting and the pipe.
C.3.2 Open the water outlet valve and close the air inlet valve on the pipe shut-off.
C.3.3 Open the water inlet valve. When the assembly is half full, that is say when water flows from the outlet, close the water inlet and outlet valves.
C.3.4 Open the air inlet valve and increase the internal air pressure to $0,01 \mathrm{MPa} \pm 0,001 \mathrm{MPa}$ (0,1 bar $\pm 0,01$ bar) at ambient temperature. Maintain this pressure for 5 min .
C.3.5 Note, during this 5 min period, any leaks which occur between the mouth of the fitting and the pipe, and which are evident by the formation of
C.3.6 Deflect the pipe manually in the socket of the fitting until it reaches the maximum permissible deflection for the particular joint under test. Carry out this deflection at $0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270° (see
figure (5)) maintaining it for 1 min in each of these directions.

C. 4 Test requirements

No water leaks shall occur, but if bubbles appear at any time during the test, a new application of soapy water or detergent shall be made. If there is still a continuous emission of bubbles during the test, the joint shall be deemed not to meet the requirements of the test

The test requirements shall be fulfilled for all types of test assembly, including those combining minimum spigot ends and maximum sockets

[^0]: (C) ISO 1991

 All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, Including photocopying and microfilm, without. permission in writing from the publisher.

 International Organization for Standardization
 Case Postale $56 \cdot \mathrm{CH}-1211$ Genève 20 - Switzerland
 Printed in Switzerland

[^1]: 1) For the definition of the term "domestic waste waters" refer to annex A or, alternatively, to national regulations.
