

Designation: B174 - 10 B174 - 10 (Reapproved 2015)

Standard Specification for **Bunch-Stranded Copper Conductors for Electrical** Conductors¹

This standard is issued under the fixed designation B174; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope

- 1.1 This specification covers bare bunch-stranded conductors made from round copper wires, either uncoated or coated with tin, lead, or lead-alloy for use as electrical conductors (Explanatory Note 1 and Explanatory Note 2).
- 1.2 Coated wires shall include only those wires with finished diameters and densities substantially equal to the respective diameters and densities of uncoated wires.
- 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
- 1.3.1 For conductor sizes designated by AWG or kcmil, the requirements in SI units have been numerically converted from corresponding values, stated or derived, in inch-pound units. For conductor sizes designated by SI units only, the requirements are stated or derived in SI units.

2. Referenced Documents

- 2.1 The following documents of the issue in effect at the time of reference form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:²
 - ocument **B3** Specification for Soft or Annealed Copper Wire
 - B33 Specification for Tin-Coated Soft or Annealed Copper Wire for Electrical Purposes
 - B172 Specification for Rope-Lay-Stranded Copper Conductors Having Bunch-Stranded Members, for Electrical Conductors
 - B189 Specification for Lead-Coated and Lead-Alloy-Coated Soft Copper Wire for Electrical Purposes
 - B193 Test Method for Resistivity of Electrical Conductor Materials
 - B263 Test Method for Determination of Cross-Sectional Area of Stranded Conductors
 - B354 Terminology Relating to Uninsulated Metallic Electrical Conductors
 - 2.3 American National Standard:
 - ANSI C42.35 Definitions of Electrical Terms³

3. Classification

3.1 For the purpose of this specification bunch-stranded conductors are classified as shown in Tables 1 and 2.

4. Ordering Information

- 4.1 Orders for material under this specification shall include the following information:
- 4.1.1 Quantity of each size and class,
- 4.1.2 Conductor size: circular-mil area or AWG (see 7.1),
- 4.1.3 Class (Section 3 and Table 3),

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.04 on Conductors of Copper and Copper Alloys.

Current edition approved April 1, 2010 April 1, 2015. Published May 2010 April 2015. Originally approved in 1941. Last previous edition approved in 2002 2010 as $B174 - 02B174 - (2007) - 10.\frac{\epsilon_1}{2}$ DOI: $\frac{10.1520}{B0174 - 10}$ 10.1520/B0174-10R15.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's standard's Document Summary page on the ASTM website.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

TABLE 1 A Classification and Construction Requirements of Bunch-Stranded Conductors⁴ —Class I Bunch Stranded Conductors

	a of		Classification,		Uncoated	Copper		Coated Copper				
Cross	Section	Size, AWG	Size, and Minimum Number of Wires Class I Nominal Wire Diameter 0.0201 In. (0.511 mm)	Nominal do resistance @ 20C	Maximum dc resistance @20C	Nominal do resistance @ 20C	resistance @20C	resistance @20C	resistance @20C	resistance @20C	resistance @ 20C	
cmil	mm		24 AWG	ohm/kft	ohm/kft	ohm/km	ohm/km	ohm/kft	ohm/kft	ohm/km	ohm/km	
20820	10.5	7	52	0.508	0.518	1.67	1.70	0.528	0.539	1.73	1.77	
16510	8.37	8	41	0.641	0.654	2.10	2.14	0.666	0.679	2.19	2.23	
13090	6.63	9	33	0.808	0.824	2.65	2.70	0.840	0.857	2.76	2.81	
10380	5.26	10	26	1.02	1.04	3.34	3.41	1.06	1.08	3.48	3.55	

TABLE 1 B Classification and Construction Requirements of Bunch-Stranded Conductors—Class J Bunch Stranded Conductors^A

TABLE	I D Classili	Cation and	Constructio	ii nequireii			u Conducti	JIS—Class			uuciois	
Are	a of		Classification,		Uncoate	d Copper		Coated Copper				
Cross	Section		Size,									
			and									
			Minimum									
			Number									
			of Wires									
		Size,	Class J	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	
		AWG	Nominal	dc	dc	dc	dc	dc	dc	dc	dc	
			Wire	resistance	resistance	resistance	resistance	resistance	resistance	resistance	resistance	
			Diameter	@20C	@20C	@20C	@20C	@20C	@20C	@20C	@20C	
			0.0126 In.									
			(0.320 mm)									
cmil	mm		28 AWG	ohm/kft	ohm/kft	ohm/km	ohm/km	ohm/kft	ohm/kft	ohm/km	ohm/km	
10380	5.26	10	65	1.02	1.04	3.34	3.41	1.08	1.10	3.54	3.61	
6530	3.31	12	41	1.62	1.65	5.31	5.42	1.72	1.75	5.64	5.76	
4110	2.08	14	26	2.57	2.62	8.44	8.61	2.73	2.79	8.96	9.14	
2580	1.31	16	16	4.10	4.18	13.5	13.7	4.35	4.44	14.3	14.6	
1620	0.821	18	10	6.53	6.66	21.4	21.9	6.94	7.07	22.8	23.2	
1020	0.517	20	7	10.4	10.6	34.0	34.7	11.0	11.2	36.1	36.8	

TABLE 1 C Classification and Construction Requirements of Bunch-Stranded Conductors—Class K Bunch Stranded Conductors^A

Area of			Classification,		Uncoate	d Copper			Coated Copper				
Cross Section			Size,										
			and										
			Minimum Number of Wires										
		Size, AWG	Class K Nominal	Nominal dc	Maximum dc	Nominal dc	Maximum dc	Nominal dc	Maximum dc	Nominal dc	Maximum dc		
			Wire Diameter 0.0100 In.	resistance @20C									
cmil	mm		(0.254 mm) 30 AWG	ohm/kft	ohm/kft	ohm/km	ohm/km	ohm/kft	ohm/kft	ohm/km	ohm/km		
10380	5.26	10	104	1.02	1.04	3.35	3.41	1.09	1.12	3.58	3.65		
6530	3.31	12	65	1.62	1.65	5.31	5.42	1.74	1.77	5.71	5.82		
4110	2.08	14	41	2.57	2.62	8.43	8.60	2.76	2.82	9.06	9.24		
2580	1.31	16	26	4.10	4.18	13.5	13.7	4.40	4.49	14.4	14.7		
1620	0.821	18	16	6.53	6.66	21.4	21.9	7.01	7.15	23.0	23.5		
1020	0.517	20	10 ^B	10.4	10.6	34.1	34.8	11.1	11.4	36.4	37.1		
640	0.324	22	7	16.5	16.9	54.1	55.2	17.7	18.1	58.1	59.2		

^A The constructions shown in these tables are typical of those used in the industry. It is intended that these tables preclude other constructions which may be desirable for specific applications. The constructions shown provide for a finished stranded conductor approximately of the area indicated. When specified by the purchaser, the number or sizes of wire may be increased to provide additional area to compensate for draw-down during subsequent processing.

- 4.1.4 Whether coated or uncoated; if coated, designate type of coating (see 11.1),
- 4.1.5 Maximum length of lay (see 6.3),
- 4.1.6 Whether separator is required (see 7.2),
- 4.1.7 Package size (see section 14.115.1),),
- 4.1.8 Special package marking, if required (Section 14), and
- 4.1.9 Place of inspection (Section 13).

^B As an alternate to the construction shown for 20 AWG, Class K; for hook-up wire construction may consist of 8 wires 0.0100 in. (0.254 mm) diameter around wire of 0.0142 in. (0.361 mm) diameter.

TABLE 2 Classification and Construction Requirements of Bunch-Stranded Conductors—Class L, M, O, P and Q Bunch Stranded Conductors^A

							Cona	uctors^								
	a of Section			C	Classification	,			Uncoated Copper				Coated Copper			
01033 (occion			Mir	nimum Nun											
				IVIII	of Wires	ibei										
		Size,	Class L	Class M	Class O	Class P	Class Q	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	Nominal	Maximum	
			Class L	Class IVI	Class O	Class F	Class Q									
		AWG						dc	dc	dc	dc	dc	dc	dc	dc	
															eresistance	
								@20C	@20C	@20C	@20C	@20C	@20C	@20C	@20C	
			Nominal	Nominal	Nominal	Nominal	Nominal									
			Wire	Wire	Wire	Wire	Wire									
			Diameter	Diameter	Diameter	Diameter	Diameter									
			0.0080 In	. 0.0063 In.	. 0.0050 In	0.0040 In	.0.0031 In									
			(0.511	(0.320)	(0.254)	(0.320)	(0.254)									
			mm)	mm)	mm)	mm)	mm)									
cmil	mm		32 AWG	34 AWG	36 AWG	38 AWG	40 AWG	ohm/kft	ohm/kft	ohm/km	ohm/km	ohm/kft	ohm/kft	ohm/km	ohm/km	
10380	5.26	10	165					1.02	1.04	3.34	3.41	1.09	1.12	3.58	3.65	
6530	3.31	12	104					1.62	1.65	5.31	5.42	1.74	1.77	5.71	5.82	
4110	2.08	14	65	104				2.57	2.62	8.43	8.60	2.76	2.82	9.06	9.24	
2580	1.31	16	41	65	104	165		4.10	4.18	13.5	13.7	4.40	4.49	14.4	14.7	
1620	0.821	18	26	41	65	104	165	6.53	6.66	21.4	21.9	7.00	7.15	23.0	23.4	
1020	0.517	20	16	26	41	65	104	10.4	10.6	34.1	34.8	11.1	11.4	36.4	37.1	
640	0.324	22		19				16.5	16.9	54.1	55.2	17.7	18.1	58.1	59.2	
404	0.205	24	7		19			26.2	26.7	86.0	87.7	28.1	28.7	92.2	94.0	
253	0.128	26		7				41.8	42.6	137	140	44.9	45.8	147	150	

^A The constructions shown in this table are typical of those used in the industry. It is intended that this table preclude other constructions which may be desirable for specific applications. The constructions shown provide for a finished stranded conductor approximately of the area indicated. When specified by the purchaser, the number or sizes of wire may be increased to provide additional area to compensate for draw-down during subsequent processing.

TABLE 3 Maximum Length of Lay for Bunch-Stranded Conductors

Conductors									
Δ.	oo of		Maximum Length of Lay						-
	ea of Section	Size, AWG	Nominal Column Column Diameter A B			-			
cmil	mm		in.	mm	in.	mm	in.	mm	-
20 820	10.5	7	0.167	4.24	3.00	76.20	3.00	76.20	-
16 510	8.37	8	0.149	3.78	2.75	69.85	2.75	69.85	
13 090	6.63	9	0.133	3.38	2.50	63.50	2.50	63.50	
10 380	5.26	10	0.118	3.00	2.50	63.50	2.50	63.50	
6 530	3.31	12 \	0.093	2.36	2.00	50.80	2.00	50.80	
4 110	2.08	14	0.074	1.88	2.00	50.80	1.75	44.45	
2 580	11.31 d S	S116	0.059	1.50	2.00	50.80	CI- 1.50	38.10	
1 620	0.821	18	0.047	1.19	2.00	50.80	1.25	31.75	
1 020	0.517	20	0.037	0.94	2.00	50.80	1.00	25.40	
640	0.324	22	0.030	0.76	1.30	33.02	0.80	20.32	
404	0.205	24	0.024	0.61	1.20	30.48	0.70	17.78	
253	0.128	26	0.019	0.48	1.00	25.40	0.60	15.24	
159	0.0806	28	0.015	0.38	1.00	25.40	0.50	12.70	
									_

5. Joints

- 5.1 Necessary joints in wires shall be made in accordance with accepted commercial practice.
- 5.2 Joints shall be so constructed and so disposed throughout the conductor that the diameter or configuration of the completed conductor is not substantially affected, and so that the flexibility of the completed conductor is not adversely affected.

6. Lay

- 6.1 Conductors of the same size and description furnished on one order shall have the same lay.
- 6.2 The direction of lay shall be at the option of the manufacturer unless otherwise specified.
- 6.3 Unless otherwise specified by the purchaser, the length of lay of bare or coated bunch-stranded conductors shall conform to the requirements of Column B of Table 3.
- 6.4 When specified, for constructions other than those listed in Footnote A of Tables 1 and 2, the length of lay shall conform to the requirements of Column A of Table 3.
- 6.5 Conductors of an intermediate nominal area in circular mils shall conform to the requirements for length of lay of the next smaller conductor.