This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: D5024 - 07 D5024 - 15

Standard Test Method for Plastics: Dynamic Mechanical Properties: In Compression¹

This standard is issued under the fixed designation D5024; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This test method outlines the use of dynamic mechanical instrumentation for determining and reporting the viscoelastic properties of thermoplastic and thermosetting resins as well as composite systems in the form of cylindrical specimens molded directly or cut from sheets, plates, or molded shapes. The compression data generated may be used to identify the thermomechanical properties of a plastics material or composition using a variety of dynamic mechanical instruments.

1.2 This test method is intended to provide a means for determining the thermomechanical properties (as a function of a number of viscoelastic variables) for a wide variety of plastic materials using nonresonant, forced-vibration techniques as outlined in Practice D4065. Plots of the elastic (storage) modulus, loss (viscous) modulus, complex modulus, and tan delta as a function of frequency, time, or temperature are indicative of significant transitions in the thermomechanical performance of the polymeric material system.

1.3 This test method is valid for a wide range of frequencies, typically from 0.01 to 100 Hz.

1.4 Apparent discrepancies may arise in results obtained under differing experimental conditions. These apparent differences from results observed in another study can usually be reconciled, without changing the observed data, by reporting in full (as described in this test method) the conditions under which the data were obtained.

1.5 Due to possible instrumentation compliance, the data generated are intended to indicate relative and not necessarily absolute property values.

1.6 Test data obtained by this test method are relevant and appropriate for use in engineering design.

1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

NOTE 1—There is no similar or equivalent ISO known ISO equivalent to this standard.

2. Referenced Documents

2.1 ASTM Standards:²
D618 Practice for Conditioning Plastics for Testing
D4000 Classification System for Specifying Plastic Materials
D4065 Practice for Plastics: Dynamic Mechanical Properties: Determination and Report of Procedures
D4092 Terminology for Plastics: Dynamic Mechanical Properties

3. Terminology

3.1 Definitions—For definitions applicable to this test method refer to Terminology Standard D4092.

4. Summary of Test Method

4.1 This test method covers the determination of the compressive modulus of both solid and cellular plastics using dynamic mechanical techniques. A test specimen of cylindrical cross section is tested in dynamic compression. The specimen may be

*A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

¹ This test method is under the jurisdiction of ASTM Committee D20 on Plastics and is the direct responsibility of Subcommittee D20.10 on Mechanical Properties. Current edition approved March 15, 2007July 1, 2015. Published April 2007July 2015. Originally approved in 1989. Last previous edition approved in 20012007 as D5024 - 01.D5024 - 07. DOI: 10.1520/D5024-07.10.1520/D5024-15.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

secured using appropriate grip fixtures or simply positioned between two parallel, flat plates or disks. The specimen of known geometry is placed in mechanical, linear displacement at fixed frequencies and at either isothermal conditions or with a linear temperature variation. with a linear temperature variation or at variable frequencies at isothermal conditions. The elastic moduli or loss moduli, or both, of the polymeric material system are measured in compression.

Note 2-The particular method for measurement of the elastic and loss moduli and tan delta depends upon the individual instrument's operating principles.

5. Significance and Use

5.1 This test method provides a simple means of characterizing the thermomechanical behavior of plastic compositions using very small amounts of material. The data obtained can be used for quality control and/or research and development purposes. For some classes of materials, such as thermosets, it can also be used to establish optimum processing conditions.

5.2 Dynamic mechanical testing provides a sensitive method for determining thermomechanical characteristics by measuring the elastic and loss moduli as a function of frequency, temperature, or time. Plots of moduli and tan delta of a material versus these variables provide graphical representation indicative of functional properties, effectiveness of cure (thermosetting resin system), and damping behavior under specified conditions.

5.3 This test method can be used to assess:

5.3.1 Modulus as a function of temperature,

5.3.2 Modulus as a function of frequency,

5.3.3 The effects of processing treatment, including orientation,

5.3.4 Relative resin behavioral properties, including cure and damping,

5.3.5 The effects of substrate types and orientation (fabrication) on elastic modulus, and,

5.3.6 The effects of formulation additives which might affect processability or performance, performance,

5.3.7 The effects of annealing on modulus and glass transition temperature,

5.3.8 The effect of aspect ratio on the modulus of fiber reinforcements, and

5.3.9 The effect of fillers, additives on modulus and glass transition temperature.

5.4 Before proceeding with this test method, reference should be made to the specification of the material being tested. Any test specimen preparation, conditioning, dimensions, or testing parameters, or combination thereof, covered in the relevant ASTM materials specification shall take precedence over those mentioned in this test method. If there are no relevant ASTM material specifications, then the default conditions apply.

6. Interferences

6.1 Since small test specimen geometries are used, it is essential that the specimens be representative of the material being tested.

7. Apparatus

7.1 The function of the apparatus is to maintain a cylindrical test specimen of a polymeric material system so that the material acts as the elastic and dissipative element in a mechanically driven linear-displacement system. These dynamic mechanical instruments generally operate in a forced, constant strain amplitude testing mode at a fixed frequency.

7.2 The apparatus shall consist of the following:

7.2.1 Fixed Member—A fixed or essentially stationary member carrying one flat plate, disc, or clamp.

7.2.2 Movable Member—A movable member carrying a second flat plate, disc, or clamp.

7.2.3 *Flat Plate or Parallel Discs and Clamps*—The fixtures are used to hold, support, and compress the test specimen between the fixed member and the movable member. These fixtures shall be mechanically aligned, that is, they shall be attached to the fixed and movable member, respectively, in such a manner that they will move freely into alignment as soon as any load is applied, so that the minor axis of the test specimen will coincide with the direction of the applied load through the center line of the fixture assembly.

7.2.3.1 The test specimen shall be held in such a way that slippage relative to the flat plates is prevented as much as possible. 7.2.4 *Linear Deformation (strain)*—A device for applying a continuous linear deformation (strain) to the specimen. In the force-displacement device the deformation (strain) is applied and then released (See Table I of Practice D4065).

7.2.5 *Detectors*—A device or devices for determining dependent and independent experimental parameters, such as force (stress), deformation (strain), frequency, and temperature. Temperature should be measurable with a precision of $d + 1^{\circ}$ C, frequency to ± 1 %, strain to ± 1 %, and force to ± 1 %.

7.2.6 *Temperature Controller and Oven*—A device for controlling the temperature, either by heating (in steps or ramps), cooling (in steps or ramps), maintaining a constant specimen environment or a combination thereof. A temperature controller should be sufficiently stable to permit measurement of environmental chamber temperature to within 1°C.

7.3 Nitrogen, or other inert gas supply, for purging purposes if appropriate.