INTERNATIONAL STANDARD

Acoustics – Determination of sound power levels of noise sources – Precision methods for discrete-frequency and narrow-band sources in reverberation rooms

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION MEMOUPAPODHAS OPTAHUSALUS TO CTAHDAPTUSALUM ORGANISATION INTERNATIONALE DE NORMALISATION

Acoustique — Détermination des niveaux de puissance acoustique émis par les sources de bruit — Méthodes de laboratoire en salles réverbérantes pour les sources émettant des fréquences discrètes et des bruits à bandes étroites

First edition - 1975-07-15

(standards.iteh.ai)

<u>ISO 3742:1975</u> https://standards.iteh.ai/catalog/standards/sist/a3cc7752-590b-4f20-99df-2b4b41f67812/iso-3742-1975

UDC 534.6

Ref. No. ISO 3742-1975 (E)

Descriptors : acoustics, noise (sound), sound sources, audio frequencies, tests, measuring, sound power, premises, reverberation.

3742

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 3742 (originally ISO/DIS 2946) was drawn up by Technical Committee ISO/TC 43, Acoustics, and circulated to the Member Bodies in March 1973. (standards.iteh.ai)

It has been approved by the Member Bodies of the following countries :

Ireland

Norway

Poland

Portugal

Netherlands

Israel

Australia
Austria
Belgium
Brazil
Bulgaria
Canada
Czechoslovakia
Denmark
France

Germanyndards.iteh.ai/catalogromdanias/sist/a3cc7752-590b-4f20-99df-2b4b41 South/Africa 2Rep7of Hungary India

ISO 3742:1975

Spain
Sweden
Switzerland
Thailand
Turkey
United Kingdom
U.S.A.

No Member Body expressed disapproval of the document.

© International Organization for Standardization, 1975 •

Printed in Switzerland

CONTENTS	Page
0.1 Related International Standards	1
0.2 Synopsis of ISO 3742	2
0.3 Introduction	2
1 Scope and field of application	2
2 References	3
3 Determination of the significance of discrete-frequency components and narrow bands of noise	3
iTeh Standard Mumber of microphone positions and source locations	4
Alternative qualification procedure for the measurement of discrete- frequency components	6
ISO 3742:1975 https://standards.it. B . a Guidelines.for.theidesign 765 tating diffusers - 2b4b41f67812/iso-3742-1975	9

iTeh STANDARD PREVIEW (standards.iteh.ai)

4

<u>ISO 3742:1975</u> https://standards.iteh.al/catalog/standards/sist/a3cc7752-590b-4f20-99df-2b4b41f67812/iso-3742-1975

Acoustics – Determination of sound power levels of noise sources – Precision methods for discrete-frequency and narrow-band sources in reverberation rooms

0.1 RELATED INTERNATIONAL STANDARDS

This International Standard is one of a series specifying various methods for determining the sound power levels of machines and equipment. These basic documents specify only the acoustical requirements for measurements appropriate for different test environments as shown in table 1.

When applying these basic documents it is necessary to decide which one is most appropriate for the conditions

and purposes of the test. The operating and mounting conditions of the machine or equipment to be tested must be in accordance with the general principles stated in the basic documents.

Guidelines for making these decisions are provided in ISO 3740. If no sound test code is specified for a particular machine, the mounting and operating conditions shall be fully described in the test report.

iTeh STANDARD PREVIEW

TABLE 1 - International Standards describing methods for determining the sound power levels

of machines and equipment

International Standard No.*	Classification S: of method	standards, iteh, ai/cat Test environment 2b4b	alog/standards/sist/a Volume of source 41167812/1so-3742	3cc7752-590b-4f2 Character of noise -1975	OSound power levels obtainable	Optional information available
3741	Precision	Reverberation room meeting specified requirements	Preferably less than 1 % of test room volume	Steady, broad-band	In one-third octave or octave bands	A-weighted sound power level
3742				Steady, discrete- frequency or narrow-band		
3743	Engineering	Special test room		Steady, broad-band, narrow-band, discrete- frequency	A-Weighted and in octave bands	Other weighted sound power levels
3744	Engineering	Outdoors or in large room	No restrictions : limited only by available test environment	Any	A-weighted and in one-third	Directivity infor- mation and sound pressure levels as a function of time; other weighted sound power levels
3745	Precision	Anechoic or semi-anechoic room	Preferably less than 0,5 % of test room volume	Any	octave or octave bands	
3746	Survey	No special test environment	No restrictions : limited only by available test environment	Steady, broad-band, narrow-band, discrete- frequency	A-weighted	Sound pressure levels as a function of time; other weighted sound power levels

See clause 2.

0.2 SYNOPSIS OF ISO 3742

Applicability

Test environment

Prescribed reverberation room which is to be qualified according to a test procedure given in clause 3 of the main part of the standard and in annex A. Additional test room requirements as given in ISO 3741.

Size of noise source

Volume of the source preferably less than 1 % of test room volume.

Character of noise radiated by the source

Steady (as defined in ISO 2204), discrete frequency and/or narrow-band.

Accuracy

Precision (standard deviation for determining sound power levels for the 1 kHz octave band is less than 1,5 dB).

Quantities to be measured

Sound pressure levels in frequency bands on a prescribed path or at several discrete microphone positions.

Quantities to be determined

Sound power levels in frequency bands, A-weighted sound power level# (optional).

Quantities which cannot be calculated //standards.iteh.ai/catalog/stan

Directivity characteristics of the source, temporal pattern of radiated noise for sources emitting non-steady noise.

0.3 INTRODUCTION

This International Standard specifies in detail two laboratory methods for determining the sound power of small sources using a reverberation test room.

The procedure specified in ISO 3741 applies to sources which produce steady, broad-band noise. This International Standard gives additional precautions that must be observed when discrete frequencies or narrow bands of noise are present in the spectrum of the noise radiated by the sound source.

When a source emits narrow-band or discrete-frequency sound, a precise determination of the radiated sound power requires greater effort. The accuracy objectives for characterizing broad-band sound sources (table 2 of ISO 3741) cannot be achieved with a three-meter microphone traverse (or with only three microphones in a fixed array) and with only one source location in the reverberation room. The reasons are as follows :

1) the spaced-time averaged sound pressure along the microphone path (sub-clause 7.1 of ISO 3741), or as determined with an array of three microphones, is not always a good estimate of the spaced-time averaged mean-square pressure throughout the room;

2) the sound power radiated by the source is more strongly influenced by the normal modes of the room and by the position of the source within the room.

When narrow bands of noise or discrete frequencies are emitted by a source, a determination of its sound power level in a reverberation room requires the use of a greater number of source locations and microphone positions (or a greater path length for a moving microphone). The required numbers of locations and positions depend upon the desired accuracy, the spectrum of the radiated noise, and the properties of the test room. These numbers can usually be reduced if one or more diffusers are rotating in the test room during the measurements. Guidelines for the design of suitable rotating diffusers are given in annex B. The use of rotating diffusers considerably reduces the effort required to make measurements on sources that emit discretefrequency components.

This International Standard, together with the others in this series (see table 1), supersedes ISO/R 495.

1 SCOPE AND FIELD OF APPLICATION

1.1 General

This International Standard specifies the special requirements that are necessary for accurate determinations of the sound power when discrete frequencies or narrow standa bands of noise are radiated by a source.

ISO 3742:1 Field of application

This International Standard applies to sources which radiate

·2b4b41f678

discrete frequencies or narrow bands of noise. The spectrum of the source may or may not include broad-band components upon which the prominent discrete frequencies or narrow bands of noise are superposed. These methods may be found to be complex and time-consuming for measurements on sources which primarily radiate discrete frequencies below 200 Hz. For such sources, measurements in a free field as described in ISO 3745 may be more appropriate.

1.3 Measurement uncertainty

Measurements made in accordance with this International Standard tend to result in standard deviations which are equal to or less than those given in table 2. The standard deviations take into account the cumulative effects of all causes of uncertainty.

TABLE 2 - Uncertainty in determining sound power levels of discrete-frequency sound sources in reverberation rooms

Octave band centre frequencies	One-third octave band centre frequencies	Standard deviation
Hz	Hz	dB
125	100 to 160	3,0
250	200 to 315	2,0
500 to 4 000	400 to 5 000	1,5
8 000	6 300 to 10 000	3,0

2

1.4 Principal requirements

To meet the accuracy objectives of table 2, additional microphone positions and source locations are usually required as determined in clause 4. First, however, a determination may be made concerning the presence and significance of discrete-frequency components or narrow bands of noise in the spectrum of the sound emitted by the source (clause 3).

Alternatively, it may be assumed that the spectrum of the sound emitted by the machine or equipment under test does contain significant discrete-frequency components. In this case either the precautions described in clause 4 should be followed or the test set-up should be qualified as described in annex A.

If the room qualifies according to the requirements of annex A, additional source locations are not required. Qualification of the test set-up according to annex A is usually possible only when a rotating diffuser and additional microphone positions are used in the room.

1.5 Other requirements

All other requirements for determining the sound power emitted by discrete-frequency and narrow-band sound sources are the same as for broad-band sources described in ISO 3741. standards.

ISO 3745, Acoustics - Determination of sound power levels of noise sources - Precision methods for anechoic and semi-anechoic rooms.²⁾

ISO 3746, Acoustics - Determination of sound power levels of noise sources - Survey method.1)

IEC Publication 50 (08), International electrotechnical vocabulary - Electro-acoustics.

IEC Publication 179, Precision sound level meters.

IEC Publication 225, Octave, half-octave and third-octave band filters intended for the analysis of sound and vibrations.

3 DETERMINATION OF THE SIGNIFICANCE OF DISCRETE-FREQUENCY **COMPONENTS** AND NARROW BANDS OF NOISE

3.1 General

When a discrete-frequency component is present in the spectrum of a source, the spatial variations in the sound pressure level usually/exhibit maxima separated by minima having an average spacing of approximately 0.8 λ where λ is the wavelength corresponding to the frequency of the sound.

<u>ISO 3742:1975</u> 3.2 Qualitative procedure 2 REFERENCES https://standards.iteh.ai/catalog/standards/sist/

ISO/R 266, Preferred frequencies measurements.

ISO/R 354, Measurement of absorption coefficients in a reverberation room.

ISO/R 1680, Test code for the measurement of the airborne noise emitted by rotating electrical machinery.

ISO 2204, Guide to the measurement of airborne acoustical noise and evaluation of its effects on man.

ISO 3740, Acoustics - Determination of sound power levels of noise sources - Guidelines for the use of basic standards and for the preparation of noise test codes.¹⁾

ISO 3741, Acoustics - Determination of sound power levels of noise sources - Precision methods for broad-band sources in reverberation rooms.

ISO 3743, Acoustics - Determination of sound power levels of noise sources - Engineering methods for special reverberation test rooms.2)

ISO 3744, Acoustics - Determination of sound power levels of noise sources - Engineering methods for free-field conditions over a reflecting plane.2)

for4b4 acoustical-3742The/presence of a significant discrete-frequency component can often be detected by a simple listening test. If such a component is audible, the measurements described in 3.3 may be omitted. In this case, either the provisions of the bottom row of table 3 shall be applied or, alternatively, the test set-up shall be qualified as described in annex A.

> Discrete-frequency components may be present in the spectrum even when these components are not audible. A conclusion that no discrete-frequency components are present can only be reached by performing the test described in 3.3.

3.3 Estimate of standard deviation

An estimate of the standard deviation of the sound pressure levels produced by the source under test in the room is obtained as follows :

3.3.1 Select an array of six fixed microphones (or six microphone positions) spaced at least $\lambda/2$ apart, where λ is the wavelength of the sound corresponding to the lowest frequency of the frequency band of interest. Locate the source at a single position in the test room.

In preparation. 1)

2) At present at the stage of draft.

Obtain the time-averaged sound pressure level L_i at each microphone position according to the techniques described in ISO 3741. Instead of a fixed array, a single microphone may be sequentially positioned at six points equally spaced along a path the length of which is calculated from equation (2) with $N_m = 6$.

The time-averaged sound pressure level is determined at each point.

3.3.2 For each one-third octave or octave band within the frequency range of interest, calculate the standard deviation from the following equation :

$$s = [n-1]^{-1/2} \left[\sum_{i=1}^{n} (L_i - L_m)^2 \right]^{1/2} \dots (1)$$

where

s is the standard deviation of space/time-averaged sound pressure levels in the room, L_i , in decibels;

 $L_{\rm m}$ is the arithmetic mean value of the sound pressure levels L_1 to L_6 , in decibels;

n = 6.

The magnitude of s depends upon the properties of the sound field in the test room. These properties are influenced by the characteristics of the room as well as the characteristics of the source (i.e. directivity and spectrum of emitted sound). In theory, a standard deviation of

5,56 dB corresponds to a spectral component of zero 7 is the reverberation time of the room, in seconds; bandwidth, i.e. a discrete tone. 204041f67812/istv-3 is the volume of the room, in cubic metres;

4 NUMBER OF MICROPHONE POSITIONS AND SOURCE LOCATIONS

4.1 General

Because equation (1) gives only an estimate of the true standard deviation, this International Standard uses three broad ranges of values for s to determine the number of

microphone positions (or path length) and the number of source locations required to achieve the estimated accuracy. Detailed knowledge of the spectrum of the source is not necessary for carrying out the measurements. Irregularities in the sound field are taken into account in so far as they influence the estimate of the standard deviation s.

4.2 Computational procedures

The value of s calculated according to 3.3.2 is used with tables 3 and 4 to determine the recommended microphone path length and the number of source locations. The number of microphone positions is determined from table 4. If a continuous microphone traverse is used, the length of the traverse should be at least

$$I = N_{\rm m} (\lambda/2) \qquad \dots \qquad \dots \qquad (2)$$

where λ is as defined in 3.3.1, and N_m is the number of microphone positions.

The required number of source locations depends on the reverberation time and volume of the room, and on the frequency. For discrete-frequency tones, the recommended number of source locations, N_s , should be computed from

upon the properties of the DARD PREVIEW
om. These properties are
$$N_{s} \ge K$$
 $0.79 \left(\frac{T}{V}\right) \left(\frac{1\ 000}{f}\right)^{2} + \frac{1}{N_{m}}$...(3)
i.e. directivity and spectrum where

f is the frequency, in hertz, of the discrete tone or the centre frequency of the band in which a discrete-frequency or narrow-band noise component is found:

K is a constant given in table 4;

 $N_{\rm m}$ is the number of microphone positions for the narrow-band or discrete-frequency tone (see table 4).

TABLE 3 - Procedures to be followed in the measurement of	discrete-frequency component	s or narrow bands of nois
---	------------------------------	---------------------------

Standard deviation, s dB	Procedure	Number of microphone positions, N _m (or microphone path length, /)	Number of source locations, $N_{ m s}$
s < 1,5	Broad-band procedure adequate	N _m = 3 or / computed from equation (2) for a continuous path	N _s = 1
1,5 < \$ ≤ 3	Assume that a narrow band of noise is present	N _m determined from table 4 or / computed from equation (2) for a continuous path	Use half the number of source locations computed from equation (3)
s > 3	Assume that a discrete tone is present	N _m determined from table 4 or / computed from equation (2) for a continuous path	Compute N _s from equation (3)

The value of $N_{\rm s}$ shall be rounded to the nearest higher integer.

The minimum distance between any two source positions shall be $r_{\rm min} = \lambda/2$, where λ is as defined in 3.3.1. The source positions should not be symmetric with respect to the axes of the test room.

After the minimum number of microphone positions (or appropriate microphone path length) and the recommended number of source locations have been selected, the procedures of 7.2 of ISO 3741 shall be followed to obtain values of L_p , the mean band pressure levels in the room in the one-third octave or octave bands of interest.

The sound power emitted by the source is then calculated using the procedures of clause 8 of ISO 3741.

Octave band (and one-third octave band) centre frequencies	Number of microphone positions (N_m) if $1,5 < s \le 3$ dB	Number of microphone positions (N_m) if s > 3 dB	Constant K for determining number of source locations
125 (100, 125, 160)	3	6	5
250 (200, 250, 315)	6	12	10
500 (400, 500, 630)	12	24	20
1 000 (800, 1 000, 1 250) and up	15	30	25

TABLE 4 - Number of microphone positions required and

constant K for determining number of source locations

iTeh STANDARD PREVIEW (standards.iteh.ai)

<u>ISO 3742:1975</u> https://standards.iteh.ai/catalog/standards/sist/a3cc7752-590b-4f20-99df-2b4b41f67812/iso-3742-1975