

Designation: E394 – 15

Standard Test Method for Iron in Trace Quantities Using the 1,10-Phenanthroline Method¹

This standard is issued under the fixed designation E394; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This test method covers the determination of iron in the range from 1 to 100 $\mu g.$

1.2 This test method is intended to be general for the final steps in the determination of iron and does not include procedures for sample preparation.

1.3 This test method is applicable to samples whose solutions have a pH less than 2. It is assumed that the pH is adjusted to within this range in the sample preparation.

1.4 Review the current Safety Data Sheets (SDS) for detailed information concerning toxicity, first-aid procedures, handling, and safety precautions.

1.5 The values given in SI units are the standard. Values in parentheses are for information only.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:²

D1193 Specification for Reagent Water

E60 Practice for Analysis of Metals, Ores, and Related Materials by Spectrophotometry

- E180 Practice for Determining the Precision of ASTM Methods for Analysis and Testing of Industrial and Specialty Chemicals (Withdrawn 2009)³
- E200 Practice for Preparation, Standardization, and Storage of Standard and Reagent Solutions for Chemical AnalysisE275 Practice for Describing and Measuring Performance of Ultraviolet and Visible Spectrophotometers

3. Summary of Test Method

3.1 This test method is based upon a photometric determination of the 1,10-phenanthroline complex with the iron(II) ion. The sample is dissolved in a suitable solvent and the iron is reduced to the divalent state by the addition of hydroxylamine hydrochloride. The color is then developed, by the addition of 1,10-phenanthroline. After a short reaction period, the absorbance of the solution is measured at approximately 510 nm using a suitable photometer. The absorbance of the solution, once the color is developed, is stable for at least several months.

4. Significance and Use

4.1 This test method is suitable for determining trace concentrations of iron in a wide variety of products, provided that appropriate sample preparation has rendered the iron and sample matrix soluble in water or other suitable solvent (see 10.1 and Note 5).

4.2 This test method assumes that the amount of color developed is proportional to the amount of iron in the test solution. The calibration curve is linear over the specified range. Possible interferences are described in Section 5.

5. Interferences

5.1 Fortune and Mellon⁴ have made a comprehensive study of the interferences of various inorganic ions in this determination. Table 1 and Table 2, taken from their report, show the effects of various cations and anions on the determination of 2.0 μ g/g (ppm) iron. If the maximum level of 500 μ g/g (ppm)

¹This test method is under the jurisdiction of ASTM Committee D16 on Aromatic, Industrial, Specialty and Related Chemicals and is the direct responsibility of Subcommittee D16.04 on Instrumental Analysis.

Current edition approved Nov. 1, 2015. Published January 2016. Originally approved in 1970. Last previous edition approved in 2009 as E394 – 09. DOI: 10.1520/E0394-15.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

⁴ Fortune, W. B., and Mellon, M. G., *Industrial and Engineering Chemistry*, *Analytical Edition*, IENAA Vol 10, 1938, pp. 60–64.

E394 – 15

TABLE 1 Effect of Cations on the Determination of 2 µg/g (ppm) Iron

lon	Added As	Maximum Added Without Interference, μg/g (ppm)	Applicable pH Range
Aluminum	AICI3	500	2.0–3.0
Ammonium	NH₄CI	500	2.0-9.0
Antimony	SbCl ₃	30	3.0-9.0
Arsenic	As ₂ O ₅	500	3.0-9.0
Arsenic	As ₂ O ₃	500	3.0-9.0
Barium	BaCl ₂	500	3.0-9.0
Beryllium	Be(NO ₃) ₂	500	3.0-5.5
Bismuth	Bi(NO ₃) ₃	A	^A
Cadmium	Cd(NO ₃) ₂	50	3.0-9.0
Calcium	$Ca(NO_3)_2$	500	2.0-9.0
Chromium	$Cr_2(SO_4)_3$	20	2.0-9.0
Cobalt	Co(NO ₃) ₂	10	3.0-5.0
Copper	Cu(NO ₃) ₂	10	2.5-4.0
Lead	$Pb(C_2H_3O_2)_2$	500	2.0-9.0
Lithium	LICI	500	2.0-9.0
Magnesium	$Mg(NO_3)_2$	500	2.0-9.0
Manganese	MnSO₄	500	2.0-9.0
Mercury	HgCl ₂	1	2.0-9.0
Mercury	$Hg_2(NO_3)_2$	10	3.2-9.0
Molybdenum	$(NH_4)_6MO_7O_{24}$	100	5.5–9.0
Nickel	Ni(NO ₃) ₂	2	2.5-9.0
Potassium	KCI	1000	2.0-9.0
Silver	AgNO ₃	A	^A
Sodium	NaCl	1000	2.0-9.0
Strontium	Sr(NO ₃) ₂	500	2.0-9.0
Thorium	$Th(NO_3)_4$	250	2.0-9.0
Tin	H ₂ SnCl ₆	20	3.0-6.0
Tin	H ₂ SnCl ₄	10	2.0-6.0
Tungsten	Na ₂ WO ₄	10	2.5–9.0
Uranium	$UO_2(C_2H_3O_2)_2$	100	2.0-6.0
Zinc	$Zn(NO_3)_2$	Standarde 10	2.0-9.0
Zirconium	Zr(NO ₃) ₄	50 standard Stand Standard Standard Stan	2.0–9.0

⁴ Must be completely absent because of precipitation.

TABLE 2 Effect of Anions on the Determination of 2 µg/g (ppm) Iron

lon	Added As	Maximum Added Without Interference, µg/g (ppm)	Applicable pH Range
Acetate	NaC ₂ H ₃ O ₂	500	2.0-9.0
Tetraborate	$Na_2B_4O_7$ ASTM E394-	500	3.0-9.0
Bromide	NaBr 1 / int/0.10 1.5 C	1-2 4754 0500 724600-4	2.0-9.0
Carbonate	Na ₂ CO ₃ Na ₂ CO ₃	02-4/30-9 ₅₀₀ e-/240190e4	3.0–9.0
Chlorate	KCIO ₃	500	2.5–9.0
Chloride	NaCl	1000	2.0–9.0
Citrate	$H_3C_6H_5O_7$	500	2.0–9.0
Cyanide	KCN	10	2.0–9.0
Dichromate	K ₂ Cr ₂ O ₇	20	2.5–9.0
Fluoride	NaF	500	4.0–9.0
lodide	KI	500	2.0–9.0
Nitrate	KNO ₃	500	2.0–9.0
Nitrite	KNO ₂	500	2.5–9.0
Oxalate	$(NH_4)_2C_2O_4$	500	6.0–9.0
Perchlorate	KCIO ₄	100	2.0–9.0
Phosphate	(NH ₄) ₂ HPO ₄	20	2.0–9.0
Pyrophosphate	Na ₄ P ₂ O ₇	50	6.0–9.0
Silicate	Na ₂ SiO ₃	100	2.0–4.5
Sulfate	$(NH_4)_2SO_4$	500	2.0–9.0
Sulfite	Na ₂ SO ₃	500	2.0–9.0
Tartrate	$(NH_4)_2C_4H_9O_6$	500	3.0–9.0
Thiocyanate	KCNS	500	2.0–9.0
Thiosulfate	$Na_2S_2O_3$	500	3.0–9.0

does not interfere, it is very likely that the ion will not interfere in any quantity. The data were obtained under slightly different conditions than those specified in the present test method, but the interferences should be similar. For a more detailed description of interferences, the original literature should be consulted.