

Designation: C753 - 16a

Standard Specification for Nuclear-Grade, Sinterable Uranium Dioxide Powder¹

This standard is issued under the fixed designation C753; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

INTRODUCTION

This specification is intended to provide the nuclear industry with a general standard for sinterable uranium dioxide (UO₂) powder. It recognizes the diversity of manufacturing methods by which UO₂ powders are produced and the many special requirements for chemical and physical characterization that may be applicable for a particular fuel pellet manufacturing process or imposed by the end user of the powder in a specific reactor system. It is, therefore, anticipated that the buyer may supplement this specification with more stringent or additional requirements for specific applications.

1. Scope

- 1.1 This specification covers nuclear-grade, sinterable UO₂ powder. It applies to UO₂ powder containing uranium (U) of any ²³⁵U concentration in the production of nuclear fuel pellets for use in nuclear reactors.
- 1.2 This specification recognizes the presence of reprocessed U in the fuel cycle and consequently defines isotopic limits for commercial grade UO₂. Such commercial grade UO₂ is defined so that, regarding fuel design and manufacture, the product is essentially equivalent to that made from unreprocessed U. UO₂ falling outside these limits cannot necessarily be regarded as equivalent and may thus need special provisions at the fuel fabrication plant or in the fuel design.
- 1.3 This specification does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this specification does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state, and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material.
- 1.4 This specification refers expressly to UO_2 powder before the addition of any die lubricant, binder, or pore former. If powder is sold with such additions or prepared as press feed, sampling procedures, allowable impurity contents, or powder physical requirements may need to be modified by agreement between the buyer and the seller.

- 1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory requirements prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

Facility Applications

B243 Terminology of Powder Metallurgy

B329 Test Method for Apparent Density of Metal Powders and Compounds Using the Scott Volumeter

C696 Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Uranium Dioxide Powders and Pellets

C859 Terminology Relating to Nuclear Materials

 $\frac{\text{C996}}{\text{Specification for Uranium Hexafluoride Enriched to}}$ Less Than 5 % ^{235}U

C1233 Practice for Determining Equivalent Boron Contents of Nuclear Materials

E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves

E105 Practice for Probability Sampling of Materials 2.2 ASME Standard:³

ASME NQA-1 Quality Assurance Requirements for Nuclear

¹ This specification is under the jurisdiction of ASTM Committee C26 on Nuclear Fuel Cycle and is the direct responsibility of Subcommittee C26.02 on Fuel and Fertile Material Specifications.

Current edition approved April 1, 2016. Published April 2016. Originally approved in 1973. Last previous edition approved in 2016 as C753 – 16. DOI: 10.1520/C0753-16A.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from American Society of Mechanical Engineers (ASME), ASME International Headquarters, Two Park Ave., New York, NY 10016-5990, http://www.asme.org.

2.3 Federal Regulation:⁴

Code of Federal Regulations, Title 10, Chapter 1, Nuclear Regulatory Commission, Applicable Parts

3. Terminology

3.1 *Definitions*—Definitions of terms are as given in Terminologies B243 and C859.

4. Chemical Composition

- 4.1 *Uranium Content*—The U content shall be determined on a basis to be agreed upon between the buyer and seller.
- 4.2 Oxygen-to-Uranium Ratio (O/U)—The O/U ratio may be specified as agreed upon between the buyer and seller. The determination of the O/U ratio shall be in accordance with Test Methods C696 or a demonstrated equivalent.
- 4.3 Impurity Content—The impurity content shall not exceed the individual element limit specified in Table 1 on a U basis. Total non-volatile oxide impurity content (see Table 1 and other impurity elements not having associated limits in Table 2) shall not exceed 1500 μ g/gU. Some other elements such as those listed in Table 2 may also be of concern for the buyer and should be measured and reported if requested. If an element analysis is reported as "less than" a given concentration, this "less than" value shall be used in the determination of total impurities. Impurity elements measured and their associated limits may differ from what is listed in this specification agreed upon between the buyer and seller.

TABLE 1 Impurity Elements and Maximum Concentration Limits

	L / L 1 / L / C 10 000
Element ^B	Maximum Concentration
	Limit of Uranium, µg/gU
Aluminum (AI)	300
Carbon (C)	100
Calcium (Ca) + magnesium (Mg)	200
Chlorine (CI)	100
Chromium (Cr)	200
Cobalt (Co)	100
Copper (Cu)	250
Fluorine (F)	100
Iron (Fe)	250
Lead (Pb)	250
Manganese (Mn)	250
Molybdenum (Mo)	250
Nickel (Ni)	200
Nitrogen (N)	200
Phosphorus (P)	250
Silicon (Si)	300
Tantalum (Ta)	250
Thorium ^A (Th)	10
Tin (Sn)	250
Titanium (Ti)	250
Tungsten (W)	250
Vanadium (V)	250
Zinc (Zn)	250

^A Thorium is primarily of concern because of the reactor production of ²³³U.

TABLE 2 Additional Impurity Elements

Element	
Beryllium (Be)	Lithium (Li)
Bismuth (Bi)	Niobium (Nb)
Boron (B)	Potassium (K)
Cadmium (Cd)	Silver (Ag)
Dysprosium (Dy)	Samarium (Sm)
Europium (Eu)	Sodium (Na)
Gadolinium (Gd)	Sulfur (S)
Indium (In)	Zirconium (Zr)

- 4.4 *Moisture Content*—The moisture content shall not exceed 0.50 weight percent of the powder.
 - 4.5 Isotopic Content:
- 4.5.1 For UO₂ powder with an isotopic content of ²³⁵U below 5 %, the isotopic limits of Specification C996 shall apply, unless otherwise agreed upon between the buyer and the seller. If the ²³⁶U content is greater than Enriched Commercial Grade UF₆ requirements, the isotopic analysis requirements of Specification C996 shall apply. The specific isotopic measurements required by Specification C996 may be waived, provided that the seller can demonstrate compliance with Specification C996, for instance, through the seller's quality assurance records.
- 4.5.2 For UO_2 powder that does not have an assay in the range set forth in 4.5.1, the isotopic requirements shall be as agreed upon between the buyer and the seller.
- 4.6 Equivalent Boron Content—For thermal reactor use, the total equivalent boron content (EBC) shall not exceed 4.0 μ g/g on a U basis. For purpose of EBC calculation B, Gd, Eu, Dy, Sm, and Cd shall be included in addition to elements listed in Table 1. The method of performing the calculation shall be as indicated in Practice C1233. For fast reactor use, the above limitation on EBC does not apply.

5. Physical Properties 9/86db27/astm-c753-16a

- 5.1 *Cleanliness and Workmanship*—The UO₂ powder shall be free of visible fragments of foreign matter.
- 5.2 Particle Size— UO_2 powder particle size limits and method of determination shall be as agreed upon between the buyer and seller. As an example, as agreed upon, the fraction of a representative sample not passing through a 425- μ m (No. 40) standard sieve conforming to Specification E11 shall be reported to the buyer.
- 5.3~Bulk~Density—The bulk density of UO_2 powder will depend on the processing method. Unless otherwise agreed upon between the buyer and seller, the bulk density shall be a minimum of $0.625~g/cm^3$ as determined by Test Method B329, or an agreed upon alternative.
- 5.4 Sinterability—Test pellets shall be produced and measured in accordance with a sintering performance test agreed upon between the buyer and seller. A sinterability performance test described in Appendix X1 is presented as a guide.

6. Sampling

6.1 A lot is defined as a quantity of UO_2 powder that is uniform in isotopic, chemical, physical, and sinterability characteristics.

⁴ Available from U.S. Government Printing Office, Superintendent of Documents, 732 N. Capitol St., NW, Washington, DC 20401-0001, http://www.access.gpo.gov.

^BAny additional potential impurities, added by the fabrication process for example, beyond those listed here shall be evaluated (for example, in terms of equivalent boron) and associated limits established and agreed upon between the buyer and seller