
Designation: E1790 − 04 (Reapproved 2016)´1

Standard Practice for
Near Infrared Qualitative Analysis1

This standard is issued under the fixed designation E1790; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

ε1 NOTE—Editorial change was made in Subsection 6.6.3 in April 2016.

1. Scope

1.1 This practice covers the use of near-infrared (NIR)
spectroscopy for the qualitative analysis of liquids and solids.
The practice is written under the assumption that most NIR
qualitative analyses will be performed with instruments de-
signed specifically for this region and equipped with comput-
erized data handling algorithms. In principle, however, the
practice also applies to work with liquid samples using
instruments designed for operation over the ultraviolet (UV),
visible, and mid-infrared (IR) regions if suitable data handling
capabilities are available. Many Fourier Transform Infrared
(FTIR) (normally considered mid-IR instruments) have NIR
capability, or at least extended-range beamsplitters that allow
operation to 1.2 µm; this practice also applies to data from
these instruments.

1.2 The values stated in SI units are to be regarded as
standard. No other units of measurement are included in this
standard.

1.3 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:2

E131 Terminology Relating to Molecular Spectroscopy
E1252 Practice for General Techniques for Obtaining Infra-

red Spectra for Qualitative Analysis
E1655 Practices for Infrared Multivariate Quantitative

Analysis

3. Terminology

3.1 Definitions—For definitions of general terms and sym-
bols pertaining to NIR spectroscopy and statistical
computations, refer to Terminology E131.

3.2 Definitions of Terms Specific to This Standard:
3.2.1 interactance, n—the phenomenon whereby radiant

energy entering the surface of a material is scattered by the
material back to the surface, but at a different portion of the
surface.

3.2.1.1 Discussion—This differs from diffuse reflectance,
where the returning radiation exits the same portion of the
surface of the material as the illuminating radiation entered.

3.2.2 training sample (otherwise called a “reference
sample” or “standard”), n—a quantity of material of known
composition or properties, or both, presented to an instrument
for measurement in order to find relationships between the
measurements and the composition or properties, or both, of
the sample.

3.2.2.1 Discussion—This term is typically used in conjunc-
tion with computerized methods for ascertaining the relation-
ships.

Training samples for quantitative analysis (also called
“calibration samples,” as in Practices E1655) have different
requirements than training samples used for qualitative
analysis.

4. Significance and Use

4.1 NIR spectroscopy is a widely used technique for quan-
titative analysis, and it is also becoming more widely used for
the identification of organic materials, that is, qualitative
analysis. In general, however, the concept of qualitative analy-
sis as used in the NIR spectral region differs from that used in
the mid-IR spectral region in that NIR qualitative analysis
refers to the process of automated comparison of the spectra of
unknown materials to the spectra of known materials in order
to identify the unknown. This approach constitutes a library
search method in which each user generates his own library.

4.2 Historically, NIR spectroscopy as practiced with classi-
cal UV-VIS-NIR instruments using methods similar to those
described in Practice E1252 was not considered to be a strong
technique for qualitative analysis. Although the positions and

1 This practice is under the jurisdiction of ASTM Committee E13 on Molecular
Spectroscopy and Separation Science and is the direct responsibility of Subcom-
mittee E13.11 on Multivariate Analysis.
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intensities of absorption bands in specific wavelength ranges
were used to confirm the presence of certain functional groups,
the spectra were not considered to be specific enough to allow
unequivocal identification of unknown materials. A few impor-
tant libraries of NIR spectra were developed for qualitative
purposes, but the lack of suitable data handling facilities
limited the scope of qualitative analysis severely. Furthermore,
earlier work was limited almost entirely to liquid samples.

4.3 Currently, the mid-IR procedure of deducing the struc-
ture of an unknown material by method of analysis of the
locations, strengths, and positional shifts of individual absorp-
tion bands is generally not used in the NIR.

4.4 With the development of specialized NIR instruments
and mathematical algorithms for treating the data, it became
possible to obtain a wealth of information from NIR spectra
that had hitherto gone unused. While the mathematical algo-
rithms described in this practice can be applied to spectral data
in any region, this practice describes their application to the
NIR.

4.5 The application of NIR spectroscopy to qualitative
analysis in the manner described is relatively new, and proce-
dures for this application are still evolving. The application of
chemometric methods to spectroscopy has limitations, and the
limitations are not all defined yet since the techniques are
relatively new. One area of concern to some scientists is the
effect of low-level contaminants. Any analytical methodology
has its detection limits, and NIR is no different in this regard,
but neither would we expect it to be any worse. Since the
relatively broad character of NIR bands makes it unlikely that
a contaminant would not overlap any of the measured
wavelengths, the question would only be one of degree:
whether a given amount of contaminant could be detected. The
user must be aware of the probable contaminants he is liable to
run into and account for the possibility of this occurring,
perhaps by including deliberately contaminated samples in the
training set.

5. General

5.1 NIR qualitative analysis is conducted by comparison of
NIR absorption spectra of unknown materials with those of
known reference materials. Since the absorption bands of many
substances of interest are less distinctive in the NIR than in the
mid-IR spectral region, the analytical capability of the tech-
nique relies heavily on the accuracy of the absorption mea-
surements and the relationship of the relative absorbances at
different wavelengths. Materials to be identified are measured
by a NIR spectrometer, and the spectral data thus generated are
saved in an auxiliary computer attached to the spectrometer
proper. One of the several algorithms described in Section 6 is
then applied to the data in order to generate classification
criteria, which can then be applied to data from unknown
samples in order to classify (or identify) them as being the
same as one of the previously seen materials. Good chemical
laboratory practice should be followed to help ensure repro-
ducible results for each material. The preparation and presen-
tation of samples to the instrument should be consistent within
a library, and unknowns should be treated the same way that
the training samples were.

5.1.1 The technique is applicable to liquids, solids, and
gases. For analysis of gases, multipath vapor cells capable of
achieving up to 100-m path lengths may be required. Spectra of
vapors and gases may be sensitive to the total sample pressure,
and this has to be determined for each type of sample.

5.1.2 Unknown samples to be identified may be prescreened
based on criteria other than their NIR spectra (for example,
visual inspection). The training samples (that is, the “knowns”
used to teach the algorithm what different materials look like)
may also be similarly prescreened and grouped into libraries of
similar materials (for example, liquids and solids). The un-
known is then compared with only those materials in the
appropriate library. The prescreening will help reduce the
chance of false identification, although care must be taken that
an unknown material not in the library is not identified as a
similar material that is in the library.

5.1.3 Measurements may be made by method of
transmission, reflection, or any other optical setup suitable for
collecting NIR spectra. In practice, only transmission and
diffuse reflection have been in common use.

5.1.4 Determination of the relationships between absor-
bances at different wavelengths for a set of materials and
consolidation of these relationships into a set of criteria for
identifying those materials requires the use of computerized
learning algorithms. These algorithms can also take into
account extraneous variations such as are found, for example,
when measurements are made on powdered solids.

5.1.5 Instrumentation is commercially available for making
suitable measurements in the NIR spectral region. Manufac-
turer’s instructions should be followed to ensure correct
operation, optimum accuracy, and safety before collecting data.

5.1.6 NIR spectroscopy has, as one of its paradigms, that
little or no sample preparation be required. In conformance
with that paradigm, sample preparation steps in other spectro-
scopic technologies are replaced with sample presentation
methodologies in NIR analysis. The most common sample
presentation methods are the following:

5.1.6.1 Diffuse Reflectance—Solid materials are ground into
powder (or used as-is, if already in suitably fine powder form)
and packed into a cup, which allows the surface of the sample
to be illuminated and the reflected radiant power measured.

5.1.6.2 “Transflectance”—Clear or scattering liquids are
placed in a cup containing a transparent window with a
diffusely reflecting material behind the sample. Any radiant
energy passing through the sample is reflected diffusely by the
backing material, so the net measurement is just like the diffuse
reflectance measurement of powdered solids.

5.1.6.3 Transmission—Liquids or solids are placed in cells
with two transparent windows and measured by transmission.

5.1.6.4 Fiber Probes—Illuminating and collecting fibers are
brought in parallel to the sample. A variety of optical configu-
rations are used to couple the radiant energy from the fibers to
the sample and back again, in an optical “head” of some sort.
Transmittance, reflectance, and interactance have all been used
at the sample end of the fiber to couple the radiation to the
sample. Interactance measurements are sometimes made by the
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simple expedient of pressing the end of a fiber bundle
containing mixed illuminating and receiving fibers against the
sample surface.

5.2 To connect the mathematics with the spectroscopy used,
the procedure can be generally described as follows:

(1) The spectral measurements define some multidimen-
sional space. The axes in that space are the absorbances at the
various wavelengths, or some mathematical transformation
thereof.

(2) Groups of spectra for the same material define some
region in the multidimensional space.

(3) The analysis involves determining which region the
unknown falls in.

5.2.1 Problems with this type of analysis include the fol-
lowing: insufficient separation of the groups in the multidimen-
sional space to allow for classification (indicating insufficient
differences among the spectra of the materials involved),
inadequate representation of measurement variability within
groups during training (indicating an insufficient number or
variety of training samples), or poor detection limits for minor
contaminants.

5.2.2 To optimize the methods against these potential prob-
lem areas, generation of a method occurs in three stages. In the
first, or training stage, known samples are presented to the
instrument. The data collected are then presented to one of the
various algorithms and are thus used to “train” the algorithm to
recognize the various different materials.

5.2.3 In the second, or validation stage, the ability of the
algorithm to correctly recognize materials not in the training
set of samples is tested. Samples measured during the valida-
tion stage should preferably be in the same phase and physical
condition as the known samples were during the training stage.

5.2.4 In the third, or use stage, unknown samples are
presented to the instrument, which then compares the data so
obtained to the data from the known samples and decides
whether the data from the unknown agrees with the data from
any of the known materials. The unknown material is classified
as whichever material gives the closest agreement to the data.

5.2.5 Optionally, the algorithm may provide for the case in
which the data from the unknown does not agree with that from
any of the knowns sufficiently well to permit identification, and
refuse to identify the unknown sample.

5.3 Samples to be identified during the use stage must be in
the same phase and physical condition as the known samples
were during the validation stage.

5.3.1 Liquids may be run neat or in solution. In either case,
the optical pathlength of the sample cell should be fixed, be the
same for all liquids to be compared with a given unknown, and
be specified as part of the method. While an algorithm may be
trained on data incorporating variations in these characteristics,
greater accuracy will be achieved when extraneous variations
are reduced. The unknown, of course, should also be run in a
cell under the same conditions as the training samples. If a
solution is used, the amount of dilution should also be
specified.

5.3.2 Some solids may be run as-is if they have one or more
suitably flat surfaces; others may need to be ground. If solid
samples are ground, the same procedure should be used for all

materials in a given library, and that procedure should be
specified as part of the method.

5.3.3 The unknowns must also be treated in the same
manner as the training samples. It is particularly important that
if the samples must be ground, the unknown samples should be
ground to the same particle size as the known samples included
in the library.

6. Algorithms Used

6.1 This section describes some of the computerized algo-
rithms that have been found effective for qualitative analysis in
the NIR spectral region. This section is mainly for reference.
Descriptions of multivariate methods of statistical data analysis
tend to be inherently abstract mathematically and resistant to
reduction to words. A number of books exist in both the
statistical and chemometric literature that describe methods of
multivariate analysis at varying levels of mathematical abstrac-
tion (see, for example, Refs (1-5),3 a useful starting point but
far from exhaustive list); most of the algorithms used for NIR
qualitative analysis are relatively straightforward applications
of these methods.

6.1.1 Implementations of these algorithms are available in
standard generic statistical software packages. Software pro-
grams designed for analysis of spectroscopic data may also
contain implementations of these algorithms. In addition, the
manufacturers of modern NIR spectrometers include imple-
mentations of these algorithms in their proprietary software
packages that run on the auxiliary computers supplied with the
spectrometers; this approach has the advantage that the soft-
ware matches the format and nature of the data generated by
the spectrometer. In either case, the details of the algorithms
and their implementations are usually transparent to the user. It
is the responsibility of the user to ascertain whether any
particular software package implements the desired algorithm
correctly.

6.2 Calculation of Mahalanobis distances has been de-
scribed (5-9) in the literature directly for application to NIR
spectra. The Mahalanobis distance is a way of measuring
whether a given sample falls within a given region of multi-
dimensional space, since a small distance indicates that the
sample is “close to” the center of the region, and thus within it.
The training samples define a region of space so that a
multidimensional ellipsoid includes a specified fraction of
these samples; the distance from the center of the region to the
ellipsoid surface (that is, the equivalent of a “diameter”)
defines the Mahalanobis distance. The Mahalanobis distance is
calculated from the matrix equation:

Di
2 5 ~xu 2 x̄~i!! t M~xu 2 x̄~i!! (1)

where:
Di = Mahalanobis distance of the unknown sample from

the center of the ellipsoid for the ith member (class of
samples) of the library,

3 The boldface numbers in parentheses refer to the list of references at the end of
this practice.
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xu = the vector of absorption readings for the unknown
sample to be identified, taken at different wavelengths,

x̄(i) = the average of the readings for several different
samples of the type of material representing the ith
member of the library, and

M = matrix inverse of the pooled within-group variance-
covariance matrix (described in Appendix X1; see
Refs (3, 7) for more details on this and Refs (1-5) for
more general discussions of the mathematical back-
ground).

6.2.1 The confidence interval for the Mahalanobis distance
has been shown to be distributed such that p • D has an F
distribution with k and n-k-1 df (9), where p=(n-k-1)/nk, n =
number of spectra and k = number of wavelengths (or
frequencies) used.

6.2.2 To train the algorithm, the user should take many
spectra of each standard to introduce the inherent variability of
the material into the training data. These readings then define
the region of multidimensional space that is characteristic of
that group of material; it is important to ensure that the training
samples do in fact include all of the natural variability of the
material.

6.2.3 A special case of this approach deals with the analysis
of clear (non-scattering) liquids. In this case, pure materials
have no inherent variability, so the size of the group, which is
determined by the variability of the samples (and which
becomes effectively zero for pure, non-scattering liquids),
collapses to a single point in multidimensional space, that is,
the “diameter” collapses to practically zero. In this case, the
region of acceptance for unknowns is so small that instrument
noise, or other minor and otherwise unimportant variations of
the measurement conditions, can cause valid samples to appear
outside the region defined for that material.

6.2.3.1 There are two ways to deal with this situation. The
first way is to replace the computation of Mahalanobis dis-
tances between the unknown samples and known materials
with the computation of Euclidean distances. This is accom-
plished readily by replacing the matrix inverse of the pooled
within-group variance-covariance matrix by a unit matrix (one
in which all elements are zero except for the elements on the
main diagonal, which are unity).

6.2.3.2 A second approach is to introduce random variabil-
ity into the data artificially. This has been accomplished
successfully by creating several copies of the data and then
adding a small random number to every absorption value in the
expanded data set. A careful compromise must be drawn
between small values of added noise (which will leave each
group still approximating a point too closely) and too large
values, which will cause the data to have too high an equivalent
noise and mask differences between different materials.

6.3 Principal component analysis (PCA) has been recog-
nized as one method for compressing the information from
many wavelengths into a few independent components (1-5,
10-14). Besides compressing the data, the principal compo-
nents tend to segregate the different sources of variability in a
set of spectra. By adding a group distance measurement, PCA
can be used to perform qualitative NIR analysis.

6.3.1 The basic steps to performing a PCA-based distance
measurement are as follows:

6.3.1.1 Step 1—A training set, or library of samples, is
formed that represents the groups (materials) to be distin-
guished and so identified. Each group should be represented by
several samples.

6.3.1.2 Step 2—The spectra of the samples or groups are
resolved into principal components. The number of principal
components necessary for adequate representation of the
samples is determined by some measurement of the residual
variation in the library spectra.

6.3.1.3 Step 3—For each principal component of the PCA-
space group, the mean values and standard deviations are
calculated from the sample scores for each member of that
group. Because the principal components are orthogonal, each
standard deviation (distance) is in an orthogonal direction.

6.3.1.4 Step 4—In order to classify future samples, the
cross-products of the NIR spectrum of each sample with the
principal components obtained from the training library are
computed. The distance measure from any group is calculated
using the following equation:

Di 5 ~score i 2 groupi! /S i (2)

where:
Di = distance along the ith principal component axis

from the mean of the scores for that group,
scorei = sample score for the ith principal component,
groupi = mean of the group’s scores for the ith principal

component, and
Si = standard deviation of the scores of the ith principal

component for the corresponding group.

Note that even though the principal components are calcu-
lated from the entire dataset, the standard deviations, as well as
the mean values, are calculated from each group individually.
If the distance for all principal components is smaller than
some cutoff value, then the sample is classified as part of the
group. Whitfield, et al (9) treat the criteria for determining the
cutoff value in detail. Inspection of Whitfield’s tables reveals
that a rule-of-thumb value of 3 may be used for a large enough
number of samples.

6.3.2 One popular variation of this approach is called
Simple Model of Class Analogies (SIMCA) (15, 16). In
SIMCA, each group is resolved into its own principal compo-
nents. Steps 1 through 4 are performed as if each group was the
library. Multiple groups are tested by using multiple libraries of
principal components.

6.4 Correlation:
6.4.1 The correlation coefficient (17) has long been used as

a measure of similarity between two sets of numbers. It is also
possible to use the correlation coefficient between two spectra
as a way of classifying samples.

6.4.2 The correlation coefficient (r) is generally defined as
the ratio of explained variance to total variance. It is applied to
qualitative NIR analysis by calculating the correlation coeffi-
cient between a known and unknown spectrum. (Eq 3) de-
scribes this procedure:
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