INTERNATIONAL STANDARD

3898

Bases for design of structures - Notations - General symbols

Bases du calcul des constructions - Notations - Symboles généraux

First edition - 1976-09-30

> Ifel STANDARI PREVIIEW (standards.iteh.ai)

ISO 3898:1976
https://standards.iteh.ai/catalog/standards/sist/428d2822-2137-4758-8ee5-
86aÖbee28046/iso-3898-1976

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO Member Bodies). The work of developing International Standards is carried out through ISO Technical Committees. Every Member Body interested in a subject for which a Technical Committee has been set up has the right to be represented on that Committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the Technical Committees are circulated to the Member Bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 3898° was hdrawn up by Technical Committee VIEW W
ISO/TC 98, Bases for design of structures, and was circulated to the Member
Bodises in unee 1975 (standards. iteh. ai)
It has been approved by the Member Bodies of the following countries:

The Member Bodies of the following countries expressed disapproval of the document on technical grounds :

Czechoslovakia
Switzerland

Bases for design of structures - Notations - General symbols

1 SCOPE AND FIELD OF APPLICATION

This International Standard defines standard notations for structural design.

It covers only general terms which are necessary to this field of application and excludes terms relevant to a particular material (for example steel, concrete, wood, etc.) or to a special technical field (for example foundations, etc.), which will be defined separately.

It indicates only the symbols to be used and does not prejudice the exact definition of each term, which will be within the scope of other International Standards. ANDART This International Standard has been established for useins. ite regulations, standards, technical literature and design. It does not cover future developments in safety theories or new techniques in computer design.
. 1 LO 3898:1976
https:/standards.iteh.ai/catalog/standards/sist/42
reserved for line printers and telex.

2 TYPES OF SYMBOL

2.1 Tables of letters and symbols

2.1.1 Table 1 gives general indications about the usage of different types of letter.
2.1.2 Tables 2, 3 and 4 give the meanings of letters when used as a main symbol.
2.1.3 Table 5 gives a list of special and mathematical symbols.
2.1.4 Tables 6, 7 and 8 give the meanings of letters or groups of letters when used as subscripts.

2.2 Construction of symbols

The construction of a symbol to represent a given quantity or term shall be carried out as follows :

1) The main letter of the symbol shall be selected from table 2, 3, 4 or 5 , based on consideration of dimensions and usage, as given in table 1.
2) An apostrophe (') can be used to represent compression (especially for geometrical or locational purposes).
3) Descriptive subscripts may be selected as desired. When subscripts other than those appearing in tables 6,
7 and 8 are used, a clear definition of their meaning shall be given.
4) In the construction of symbols, the first subscripts shall indicate the location, and the following subscripts shallidentify the cause (nature, location, etc.) ${ }^{11}$).
$\left.{ }^{1} 5\right)^{6}$ When there is no likelihood of confusion, some or all descriptive subscripts may be omitted.
5) Numerical figures may be used as subscripts.
6) The sign of a computed stress is given by positive $(+)$ for tension, and negative (-) for compression.

Owing to the possibility of confusion, the following precautions must be taken :

- Where there is a possibility of confusing 1 (numeral) with I (letter) in some typewritten work, L shall be used in place of I (letter) where ambiguity would otherwise arise.
- Roman upper and lower case letter O shall not be used as a leading letter owing to the possibility of confusion with zero. The lower case o may, however, be used as a subscript, with the same meaning as 0 (zero).
- Greek lower case letters iota (c), omicron (o) and upsilon (v) shall not be used owing to the possibility of confusing them with various Roman letters. For the same reason, it is recommended that, as far as possible, the use of kappa (κ) and chi (χ) be avoided. When Greek lower case letters eta (η), omega (ω) and $\mathrm{mu}(\mu)$ are used, care must be taken in writing the letters to avoid confusion with Roman lower case letters n, w and u.

[^0]TABLE 1 - Letter guide for the construction of symbols

Type of letter	Dimensions	Usage
Roman upper case	Force, force times length, length to a power other than 1, temperature	1 Action and action-effects 2 Area, first and second moments of area 3 Elastic moduli (exception to the general rule) 4 Temperature
Roman lower case	Length, quotient of length and time to a power, force per unit length or area, mass, time	1 Actions and action-effects per unit of length or area 2 Linear dimensions (length, width, thickness, etc.) 3 Strengths 4 Velocity, acceleration, frequency 5 Descriptive letters (subscripts) 6 Mass 7 Time
Greek upper case	-	Reserved for mathematics
Greek lower case	Dimensionless	1 Coefficients and dimensionless ratios 2 Strains 3 Angles 4 Densities (mass density and weight density) (exception to the general rule) 5 Stresses (exception to the general rule)

NOTE - Concepts not included in the table above shall comply with the nearest appropriate category listed.

Letter	(stan © Meaningten.ai)
$\begin{aligned} & A \\ & B \\ & C \end{aligned}$	Area (Void) (void)
$\operatorname{tttos} \mathbf{D}$ stan	Flexural rigidity of/plates and/shells28d2822-2137-47
E	Longitudinal modulus of elasticity 1976
F	Action in general
F	Force in general
G	Shear modulus
G	Permanent load (dead load)
H	Horizontal component of a force
1	Second moment of a plane area (Reserved for line printe
K	(Void)
L	Can be used for span, length of a member (see table 3)
M	Moment in general
M	Bending moment
N	Normal force
0	(To be avoided as far as possible)
$\stackrel{P}{P}$	Prestressing force
Q (or V)	Variable load (Live load) ${ }^{1 /}{ }^{\text {2 }}$)
R	Resultant force
R	Reaction force
S	First moment of a plane area (Static moment)
${ }^{S}$	Action-effect (Sollicitations)
$S(\mathrm{or} S n)$	Snow load ($S n$ where there is a risk of confusion)
T	Torsional moment
T	Temperature
$\stackrel{U}{V(\operatorname{or} Q)}$	Shear force ${ }^{2)}$ (Void)
V	Volume
V	Vertical component of a force
W (or Z)	Section modulus ${ }^{2}$
w	Wind load
χ	Force in general parallel to x-axis
Y	Force in general parallel to y-axis
z	Force in general parallel to z-axis

1) With a subscript if it is necessary to define an imposed load more precisely.
2) Subject to a future definite choice, either letter may be used according to existing national customs.

TABLE 3 - Roman lower case letters

1) Some countries use f with subscript for stress, but σ is rec-
2) With a subscript if it is necessary to define an imposed load more precisely.
3) See note 2 in table 2.
ommended.
4) Some countries use σ or β with subscript for strength, but f is recommended.
5) Can be replaced by L for some lengths or to avoid confusion with 1 (numeral).

TABLE 4 - Greek lower case letters

Letter	Symbol	Meaning
alpha	α	Angle; Ratio
beta	β	Angle; Ratio ${ }^{1}$)
gamma	γ	Weight density
gamma	γ	Safety factor
gamma	γ	Shear strain ${ }^{2}$
delta	δ	Coefficient of variation
epsilon	ϵ	Strain
xi	ξ	
eta zeta	η	\}Relative co-ordinates $\left\{\begin{array}{l}x / 1 \\ z / /\end{array}\right.$
theta	θ	Rotation
iota	ι	(T) (Void)
kappa		(To be avoided as far as possible)
lambda	λ	Slenderness ratio
mu	μ	Coefficient of friction
	ν	Poisson's ratio
omicron	o	(To. be avoided as far as possible)
pi rho	π	(Mathematical use only)
sigma	σ	Normal stress 1) 3) 4)
tau	τ	Shear stress ${ }^{4}$)
upsilon	v	(Void)
phi	$\varphi(\phi)$	Limiting value of angle of friction (for example for soils)
chi	χ	(To be avoided as far as possible)
psi	ψ	(Void)

1) Some countries use σ or β with subscript for strength, but f is recommended (see table 3).
2) For shear strain, it is also possible to use ϵ with asymmetric subscripts. Example: ϵ_{23} or $\epsilon_{y z}$.
(3) Some countries use f with subscript for stress, but σ is recommended (see table 3).
3) For shear stress, it is also possible to use σ with asymmetric subscripts. Example : $\sigma_{\mathbf{2 3}}$ or $\sigma_{\boldsymbol{y z}}$.

TABLE 5 - Mathematical and special symbols

Symbol	Maaning
Σ	Sum
$\Delta \cdots$	Difference; Increment
$\because \phi$	Diameter (for example reinforcing bar, rivets, etc.)
' (apostrophe)	Compression (especially for geometrical or locational purposes)
e	Base of Naperian logarithms : $2,71828 . .$.
π	Ratio of the circumference of a circle to its diameter: 3,14159...
n	Number of . .

TABLE 6 - General subscripts - Roman lower case letters ${ }^{1)}$

1) Other than subscripts for actions and action-effects (see table 7) and subscripts formed from abbreviations (see table 8).
2) To be used only when there is no risk of confusion
3) If necessary, a suitable subscript may be added or substituted in order to define the elastic limit more precisely (for example: $y ; 0,1$, etc.).
4) If there is a risk of confusion, "net" shall be used.

TABLE 7-Subscripts for actions and action-effects ${ }^{11}$

Letter	Meaning
a (A)	Accidental action ${ }^{2}$)
eq (E)	Earthquake action
f (F)	Action in general
f (F)	Force in general
g (G)	Permanent load (Dead load)
m (M)	Bending in general
n (N)	Normal force
p (P)	Pre-stressing force
q (Q) orv (V)	Variable load (Live load) ${ }^{3)}$ 4)
$s \quad(S)$	Action-effect
s (S)	Snow load
t (T)	Torsion in general
t (T)	Temperature
v (V) or q (Q)	Shear force ${ }^{4}$
w (W)	Wind load

1) When it is necessary for clarification, Roman upper case letters may be used as subscripts for actions and action-effects.
2) If there is a risk of confusion, "ac" may be used.
3) An imposed load must be defined more precisely.
4) See note 2 to table 2 .

TABLE 8 - Subscripts formed from abbreviations ${ }^{1)}$

1) As far as possible, abbreviations which are not contained in this table should be derived from words having Latin roots.
2) As opposed to "observed".

iTeh STANIDARID PREVIIEW (standards.iteh.ai)

ISO 3898:1976
https://standards.iteh.ai/catalog/standards/sist/428d2822-2137-4758-8ee5-86a0bee28046/iso-3898-1976

iTeh STANDARD PREVIEW (stąndardls.iteh.ai)

ISO 3898:1976
https://standards.iteh.ai/catalog/standards/sist/428d2822-2137-4758-8ee5-86a0bee28046/iso-3898-1976

[^0]: 1) Where it is necessary to avoid confusion, it is recommended that a comma be used between the two categories of subscript.
