Standard Specification for Stainless Steel Bolts, Hex Cap Screws, and Studs ${ }^{1}$

This standard is issued under the fixed designation F593; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.
$\overline{\varepsilon^{1}}$ NOTE-The equation in Table 4 was editorially corrected in August 2016.

1. Scope*

1.1 This specification covers the requirements for stainless steel bolts, hex cap screws, and studs 0.25 to 1.50 in., inclusive, in nominal diameter in a number of alloys in common use and intended for service applications requiring general corrosion resistance.
1.2 Seven groups of stainless steel alloys are covered, including thirteen austenitic, two ferritic, four martensitic, and one precipitation hardening.

Group	Alloys A	Condition B
1	$304,305,384,304 \mathrm{~L}$,	(CW) cold worked

${ }^{A}$ Unless otherwise specified on the inquiry and order, the choice of an alloy from within a group shall be at the discretion of the fastener manufacturer (see 6.1).
${ }^{B}$ See 4.2 for options.
${ }^{c}$ Sizes 0.75 in. and larger may be hot worked and solution annealed, provided the bolts comply with the cold worked (CW) mechanical property requirements.
${ }^{D}$ When approved by the purchaser, Alloys 303, 303Se, or XM1 may be furnished.
E When approved by the purchaser, Alloy 430 F may be furnished.
FWhen approved by the purchaser, Alloys 416 or 416Se may be furnished.
1.3 Supplementary requirements of an optional nature are provided, applicable only when agreed upon between the manufacturer and the purchaser at the time of the inquiry and order.
1.4 Suitable nuts for use with bolts, hex cap screws, and studs included in this specification are covered by Specification F594. Unless otherwise specified, all nuts used on these fasteners shall conform to the requirements of Specification F594, shall be of the same alloy group, and shall have a specified minimum proof stress equal to or greater than the specified minimum full-size tensile strength of the externally threaded fastener.
1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards: ${ }^{2}$

A262 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels
A276 Specification for Stainless Steel Bars and Shapes
A342/A342M Test Methods for Permeability of Weakly Magnetic Materials

[^0]A380 Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems
A484/A484M Specification for General Requirements for Stainless Steel Bars, Billets, and Forgings
A493 Specification for Stainless Steel Wire and Wire Rods for Cold Heading and Cold Forging
A555/A555M Specification for General Requirements for Stainless Steel Wire and Wire Rods
A564/A564M Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel Bars and Shapes
A582/A582M Specification for Free-Machining Stainless Steel Bars
A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
A967 Specification for Chemical Passivation Treatments for Stainless Steel Parts
D3951 Practice for Commercial Packaging
E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
F594 Specification for Stainless Steel Nuts
F606 Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, and Rivets (Metric) F0606_F0606M
F1470 Practice for Fastener Sampling for Specified Mechanical Properties and Performance Inspection
2.2 ASME Standards: ${ }^{3}$

B1.1 Unified Inch Screw Threads
B18.2.1 Square and Hex Bolts and Screws, Including Hex Cap Screws

3. Ordering Information

3.1 Orders for bolts, hex cap screws, and studs under this specification shall include the following:
3.1.1 Quantity (number of pieces of each item and size),
3.1.2 Name of item (bolt, hex cap screw, stud, etc.),
3.1.3 Size (nominal diameter, threads per inch, length; see Section 9),
3.1.4 Alloy group number (see 6.1), and
3.1.5 Condition (see 4.2).
3.2 Orders for bolts, hex cap screws, and studs under this specification may include the following optional requirements:
3.2.1 Forming (see 4.1.2),
3.2.2 Rolled or cut threads (see 4.1.3),
3.2.3 Composition (see 6.2),
3.2.4 Corrosion Resistance (see 8.1),
3.2.5 Finish (see 10.3),
3.2.6 Rejection (see 16.1), and
3.2.7 Test report (see 17.2).
3.2.8 Supplementary requirements, if any, to be specified on the order (see S1 through S8), and
3.2.9 ASTM specification and year of issue. When year of issue is not specified, fasteners shall be furnished to the latest issue.

Note 1—Example 10000 pieces, Hex Cap Screw, 0.250 in. -20×3.00 in., Alloy Group 1, Condition CW, Furnish Test Report, Supplementary Requirement S3.

4. Manufacture

4.1 Manufacture:
4.1.1 Specifications A276, A493, A564/A564M, and A582/A582M are noted for information only as suitable sources of material for the manufacture of bolts, hex cap screws, and studs to this specification.
4.1.2 Forming-Unless otherwise specified, the fasteners shall be cold formed, hot formed, or machined from suitable material at the option of the manufacturer.
4.1.3 Threads-Unless otherwise specified, the threads shall be rolled or cut at the option of the manufacturer.
4.2 Condition-The fasteners shall be furnished in the following conditions, unless specified to be furnished in one of the optional conditions:

Alloy Group	Condition Furnished Unless Otherwise Specified	Optional Conditions (must $1,2,3$
4	CW	be secified)
5	CW	AF, A, SH
6	H	A
7	H	HT
	AH	HT

[^1]| A- | Machined from annealed or solution-annealed stock thus retaining the
 properties of the original material; or hot-formed and solution annealed.
 Headed and rolled from annealed stock and then reannealed.
 AF-
 AH- |
| :--- | :--- |
| | Solution-annealed and age-hardened after forming. |
| Headed and rolled from annealed stock thus acquiring a degree of cold | |
| work. Sizes 0.75 in. and larger may be hot-worked and solution- | |
| annealed. | |

5. Heat Treatment

5.1 Alloy Groups 1, 2, and 3 (Austenitic Alloys 303, 303Se, 304, 304 L, 305, 316, 316 L, 321, 347, 384, XM1, 18-9LW, and 302HQ):
5.1.1 Condition A-When Condition A is specified, the austenitic alloys shall be heated to $1900 \pm 50^{\circ} \mathrm{F}\left(1038 \pm 28^{\circ} \mathrm{C}\right)$, at which time the chromium carbide will go into the solution, be held for a sufficient time, and then be cooled at a rate sufficient to prevent precipitation of the carbide and to provide the specified properties.
5.1.2 Condition CW-When Condition CW is specified, the austenitic alloys shall be annealed in accordance with 5.1.1, generally by the raw material manufacturer and then cold worked to develop the specified properties.
5.1.3 Condition $A F$-When Condition AF is specified, the austenitic alloys shall be annealed in accordance with 5.1.1 after all cold working (including heading and threading) has been completed.
5.2 Alloy Group 4 (Ferritic Alloys 430 and 430F):
5.2.1 Condition A-The ferritic alloys shall be heated to a temperature of $1450 \pm 50^{\circ} \mathrm{F}\left(788 \pm 28^{\circ} \mathrm{C}\right)$, held for an appropriate time, and then air cooled to provide the specified properties.
5.2.2 Condition $C W$-When Condition CW is specified, the ferritic alloys shall be annealed in accordance with 5.2.1, generally by the raw material manufacturer and then cold worked to develop the specified properties.
5.2.3 Condition $A F$-When Condition AF is specified, the ferritic alloys shall be annealed in accordance with 5.2.1 after all cold working (including heading and threading) has been completed.
5.3 Alloy Group 5 (Martensitic Alloys 410, 416, and 416Se):
5.3.1 Condition H -When Condition H is specified, the Martensitic Alloys 410, 416, and 416 Se shall be hardened and tempered by heating to $1850 \pm 50^{\circ} \mathrm{F}\left(1010 \pm 28^{\circ} \mathrm{C}\right)$ sufficient for austenitization, held for at least $1 / 2 \mathrm{~h}$ and rapid air- or oil-quenched, and then reheating to $1050^{\circ} \mathrm{F}\left(565^{\circ} \mathrm{C}\right)$ minimum for at least 1 h and air cooled to provide the specified properties.
5.3.2 Condition HT-When Condition HT is specified, the Martensitic Alloys 410, 416, and 416Se shall be hardened and tempered by heating to $1850 \pm 50^{\circ} \mathrm{F}\left(1010 \pm 28^{\circ} \mathrm{C}\right)$ sufficient for austenitization, held for at least $1 / 2 \mathrm{~h}$ and rapid air- or oil-quenched, and then reheating to $525^{\circ} \mathrm{F}\left(274^{\circ} \mathrm{C}\right)$ minimum for at least 1 h and air cooled to provide the specified properties.

5.4 Alloy Group 6 (Martensitic Alloy 431):

5.4.1 Conditions H and HT-Martensitic Alloy 431 shall be hardened and tempered in accordance with 5.3.1 and 5.3.2 as applicable.
5.5 Alloy Group 7 (Precipitation Hardening Alloy 630):
5.5.1 Condition $A H$ —Precipitation Hardening Alloy 630 shall be solution annealed and aged by heating to $1900 \pm 25^{\circ} \mathrm{F}(1038$ $\left.\pm 14^{\circ} \mathrm{C}\right)$ for at least $1 / 2 \mathrm{~h}$ and rapid air- or oil-quenched to $80^{\circ} \mathrm{F}\left(27^{\circ} \mathrm{C}\right)$ maximum, then reheating to a temperature of $1150 \pm 15^{\circ} \mathrm{F}$ $\left(621 \pm 8^{\circ} \mathrm{C}\right)$ for 4 h and air cooled to provide the specified properties.

6. Chemical Composition

6.1 Alloy Groups-It is the intent of this specification that fasteners shall be ordered by alloy group numbers, which include alloys considered to be chemically equivalent for general purpose use. The alloy groupings are shown as follows. The purchaser has the option of ordering a specific alloy, in stead of an alloy group number, as permitted in 6.2.2.
Alloy Group
1
2
3
4
5
6
7
Alloys
304, $304 \mathrm{~L}, 305,384,18-9 \mathrm{LW}, 302 \mathrm{HQ}^{A}$
$316,316 \mathrm{~L}$
321,347
430^{B}
410^{C}
431
630

[^2]6.2 Chemical Composition Limits:
6.2.1 Ordering by Alloy Group-Unless otherwise specified on the inquiry and order (see Supplementary Requirement S4), the choice of an alloy from within a group shall be at the discretion of the fastener manufacturer as required by his method of fastener fabrication and material availability. The specific alloy used by the fastener manufacturer shall be clearly identified on any certification required by the order and shall have a chemical composition conforming to the requirements of Table 1 for the specific alloy.
6.2.2 Ordering by Specific Alloy-When ordered by a specific alloy number, the fasteners shall conform to the chemical composition limits of Table 1 for the specific alloy.

6.3 Product Analysis:

6.3.1 When performed, product analysis to determine chemical composition shall be performed on at least one fully manufactured finished fastener representing each lot. The chemical composition thus determined shall conform to the requirements of Table 1 for the specified alloy or alloy group as appropriate, subject to the Product Analysis Tolerance in Specifications A484/A484M and A555/A555M.
6.3.2 In the event of discrepancy, a referee chemical analysis of samples from each lot shall be made in accordance with 14.1.

7. Mechanical Properties

7.1 The finished fasteners shall meet the applicable mechanical property and test requirements of Table 2 and Table 3 as appropriate for the specified alloy group and condition and shall be tested for conformance to the mechanical property requirements as specified herein.
7.2 Fasteners having a nominal thread diameter-length combination as follows:

Thread Diameter, in.	Thread Length, in.
0.75 or less	$2.25 D$ or longer
Over 0.75	$3 D$ or longer

and a breaking load of $120000 \mathrm{lbf}(535 \mathrm{kN}$) or less shall be tested full size and shall meet the full-size tensile (minimum and maximum) and yield strength requirements in Table 2 for the specified alloy.
7.3 Fasteners having a nominal thread diameter-length combination in accordance with 7.2 and a breaking load exceeding $120000 \mathrm{lbf}(535 \mathrm{kN})$ shall be tested full-size and shall meet the full size tensile (minimum and maximum) and yield strength properties in Table 2. When equipment of sufficient capacity for such tests is not available, or if excessive length of the fasteners makes full-size testing impractical, use of standard or round specimens that meet the "machined specimen test tensile properties" in Table 2 is permitted. In the event of discrepancy or dispute between test results obtained from full-size finished fasteners and standard or round specimens, the referee method shall be tests performed on full-size finished fasteners.
7.4 Fasteners that are too short (lengths less than that specified in 7.2 (see Test Methods F606 and Table 4); have insufficient threads for tension; or have drilled or undersized heads, drilled or reduced bodies, and so forth, that are weaker than the thread section, shall not be subject to tension tests but shall conform to the hardness (minimum and maximum) requirements of Table 2 .

TABLE 1 Chemical Requirements

Alloy Group	UNS Designation	Alloy	Composition, \% maximum except as shown									
			Carbon	Manganese	Phosphorus	Sulfur	Silicon	Chromium	Nickel	Copper	Molybdenum	Others
Austenitic Alloys												
1	S30300	303	0.15	2.00	0.20	0.15 min	1.00	17.0 to 19.0	8.0 to 10.0		$0.60 \mathrm{max}^{\text {A }}$	
1	S30323	303 Se	0.15	2.00	0.20	0.060	1.00	17.0 to 19.0	8.0 to 10.0			Se 0.15 min
1	S30400	304	0.08	2.00	0.045	0.030	1.00	18.0 to 20.0	8.0 to 10.5	1.00		
1	S30403	304 L	0.03	2.00	0.045	0.030	1.00	18.0 to 20.0	8.0 to 12.0	1.00		
1	S30500	305	0.12	2.00	0.045	0.030	1.00	17.0 to 19.0	10.5 to 13.0	1.00		
1	S38400	384	0.08	2.00	0.045	0.030	1.00	15.0 to 17.0	17.0 to 19.0	. . .	0.50 max $^{\text {A }}$. .
1	S20300	XM1	0.08	5.0 to 6.5	0.040	0.18 to 0.35	1.00	16.0 to 18.0	5.0 to 6.5	1.75 to 2.25		\ldots
1	S30430	18-9LW	0.10	2.00	0.045	0.030	1.00	17.0 to 19.0	8.0 to 10.0	3.0 to 4.0		
1	S30433	302HQ	0.03	2.00	0.045	0.030	1.00	17.0 to 19.0	8.0 to 10.0	3.0 to 4.0		
2	S31600	316	0.08	2.00	0.045	0.030	1.00	16.0 to 18.0	10.0 to 14.0	. . .	2.00 to 3.00	
2	S31603	316 L	0.03	2.00	0.045	0.030	1.00	16.0 to 18.0	10.0 to 14.0	\ldots	2.00 to 3.00	
3	S32100	321	0.08	2.00	0.045	0.030	1.00	17.0 to 19.0	9.0 to 12.0			Ti $5 \times \mathrm{C}$ min
3	S34700	347	0.08	2.00	0.045	0.030	1.00	17.0 to 19.0	9.0 to 13.0	\ldots	\ldots	$\mathrm{Cb}+\mathrm{Ta} 10 \times \mathrm{C}$ min
Ferritic Alloys												
4	S43000	430	0.12	1.00	0.040	0.030	1.00	16.0 to 18.0				
4	S43020	430F	0.12	1.25	0.060	0.15 min	1.00	16.0 to 18.0			0.60 max $^{\text {A }}$	
Martensitic Alloys												
5	S41000	410	0.15	1.00	0.040	0.030	1.00	11.5 to 13.5				
5	S41600	416	0.15	1.25	0.060	0.15 min	1.00	12.0 to 14.0			$0.60 \max ^{\text {A }}$	
5	S41623	416 Se	0.15	1.25	0.060	0.060	1.00	12.0 to 14.0			0.60 max	Se 0.15 min
6	S43100	431	0.20	1.00	0.040	0.030	1.00	15.0 to 17.0	1.25 to 2.50	\ldots	\ldots	...
Precipitation Hardening Alloy												
7	S17400	630	0.07	1.00	0.040	0.030	1.00	15.0 to 17.5	3.0 to 5.0	3.0 to 5.0	. .	Cb+Ta 0.15-0.45

[^3]TABLE 2 Mechanical Property Requirements ${ }^{A}$

Stainless AIloy Group	Condition ${ }^{\text {B }}$	Alloy Mechanical Property Marking	Nominal Diameter, in.	Full-Size Tests			Machined Specimen Tests		
				Tensile Strength ksi^{C}	Yield Strength, $\mathrm{ksi}^{D, C}$	Rockwell Hardness	Tensile Strength ksi^{C}	Yield Strength, $\mathrm{ksi}^{D, C}$	Elon- gation in $4 D, \%$
Austenitic Alloys									
	- AF	F593A	$1 / 4$ to $11 / 2$, incl	65 to 85	20	B85 max	60	20	40
1	A	F593B	$1 / 4$ to $11 / 2$, incl	75 to 100	30	B65 to 95	70	30	30
(303, 304,	CW1	F593C	$1 / 4$ to $5 / 8$, incl	100 to 150	65	B95 to C32	95	60	20
304 L, 305,	CW2	F593D	$3 / 4$ to $11 / 2$, incl	85 to 140	45	B80 to C32	80	40	25
384,	SH1	F593A	$1 / 4$ to $5 / 8, \mathrm{incl}$	120 to 160	95	C24 to C36	115	90	12
$\begin{gathered} \text { XM1, } \\ \text { 18-9LW, } \end{gathered}$	SH2	F593B	$3 / 4$ to 1 , incl	110 to 150	75	C20 to C32	105	70	15
$\begin{aligned} & 302 \mathrm{HQ}, \\ & 303 \mathrm{Se} \text {, } \end{aligned}$	SH3	F593C	$11 / 8$ to $11 / 4, \mathrm{incl}$	100 to 140	60	B95 to C30	95	55	20
	SH4	F593D	$13 / 8$ to $11 / 2$, incl	95 to 130	45	B90 to C28	90	40	28
	AF	F593E	$1 / 4$ to $11 / 2$, incl	65 to 85	20	B85 max	60	20	40
	A	F593F	$1 / 4$ to $11 / 2$, incl	75 to 100	30	B65 to 95	70	30	30
	CW1	F593G	$1 / 4$ to $5 / 8$, incl	100 to 150	65	B95 to C32	95	60	20
2	CW2	F593H	$3 / 4$ to $11 / 2$, incl	85 to 140	45	B80 to C32	80	40	25
(316,	SH1	F593E	$1 / 4$ to $5 / 8$, incl	120 to 160	95	C24 to C36	115	90	12
316L)	SH2	F593F	$3 / 4$ to 1 , incl	110 to 150	75	C20 to C32	105	70	15
	SH3	F593G	$11 / 8$ to $11 / 4$, incl	100 to 140	60	B95 to C30	95	55	20
	SH4	F593H	$13 / 8$ to $11 / 2$, incl	95 to 130	45	B90 to C28	90	40	28
	AF	F593J	$1 / 4$ to $11 / 2$, incl	65 to 85	20	B85 max	60	20	40
	A	F593K	$1 / 4$ to $11 / 2$, incl	75 to 100	30	B65 to 95	70	30	30
	CW1	F593L	$1 / 4$ to $5 / 8$, incl	100 to 150	65	B95 to C32	95	60	20
$\begin{gathered} 3 \\ (321,347) \end{gathered}$	CW2	F593M	$3 / 4$ to $11 / 2$, incl	85 to 140	45	B80 to C32	80	40	25
	SH1	F593J	$1 / 4$ to $5 / 8$, incl	120 to 160	95	C24 to C36	115	90	12
	SH2	F593K	$3 / 4$ to 1 , incl	110 to 150	75	C20 to C32	105	70	15
	SH3	F593L	$11 / 8$ to $11 / 4, \mathrm{incl}$	100 to 140	60	B95 to C30	95	55	20
	SH4	F593M	$13 / 8$ to $11 / 2$, incl	95 to 130	45	B90 to C28	90	40	28
Ferritic Alloys									
4	AF	F593X	$1 / 4$ to $11 / 2$, incl	55 to 75	30	B85 max	50	25	
(430, 430F)	A	F593N	$1 / 4$ to $11 / 2$, incl	55 to 75	30	B85 max	50	25	. .
	CW1	F593V	$1 / 4$ to $5 / 8, \mathrm{incl}$	60 to 105	40	B75 to 98	55	35	. .
	CW2	F593W	$3 / 4$ to $11 / 2$, incl	55 to 100	30	B65 to 95	50	25	. . .
Martensitic Alloys									
5	H	F593P	$1 / 4$ to $11 / 2$, incl	110 to 140	90	C20 to 30	110	90	18
$\begin{gathered} (410,416, \\ 416 \mathrm{Se}) \end{gathered}$	HT	F593R	$1 / 4$ to $11 / 2$, incl	160 to 190	120	C34 to 45	160	120	12
6	H	F593S	$1 / 4$ to $11 / 2$, incl	125 to 150	100	C25 to 32	125	100	15
(431)	HT	F593T	$1 / 4$ to $11 / 2$, incl	180 to 220	140	C40 to 48	180	140	10
Precipitation Hardening Alloys									
$\begin{gathered} 7 \\ (630) \end{gathered}$	AH	F593U	$1 / 4$ to $11 / 2$, incl	135 to 170	105	C28 to 38	135	105	16

[^4]TABLE 3 Mechanical Test Requirements for Bolts and Studs ${ }^{A}$

Item	Nominal Length		Tensile Load, lbf	Full-Size Tests				Machined Specimen Tests		
	Diameters $3 / 4 \mathrm{in}$. and Less	Diameters Over $3 / 4$ in.		Wedge Tensile Strength	Axial Tensile Strength	Yield Strength	Rockwell Hardness	Tensile Strength	Yield Strength	Elongation
Square and hex bolts and hex cap screws	less than $21 / 4 D$	less than 3D	all	Option A	B	B	Option C	B	B	B
	$21 / 4 D$ and longer	$3 D$ and longer	$\begin{gathered} 120000 \\ \max \\ \hline \end{gathered}$	mandatory	B	mandatory	B	B	B	B
			$\begin{gathered} \hline \text { over } \\ 120000 \\ \hline \end{gathered}$	Option A	B	Option A	B	Option B	Option B	Option B
Studs and other bolts	less than $21 / 4 D$	less than 3D	all	B	Option A	${ }^{B}$	Option C	B	B	B
	$21 / 4 D$ and longer	$3 D$ and longer	$\begin{gathered} 120000 \\ \max \\ \hline \end{gathered}$	B	mandatory	mandatory	в	B	B	B
			$\begin{gathered} \hline \text { over } \\ 120000 \end{gathered}$	B	Option A	Option A	B	Option B	Option B	Option B
Specials ${ }^{\text {c }}$	all	all	all	${ }^{B}$	${ }^{B}$	${ }^{B}$	mandatory	B	B	B

${ }^{A}$ Where options are given, all the tests under an option shall be performed. Option A, Option B, and Option C indicates manufacturer may perform all Option A (full-size), all Option B (machined specimen), or all Option C tests whichever is preferred. Option A tests should be made whenever feasible.
${ }^{B}$ Tests that are not mandatory.
${ }^{C}$ Special fasteners are those fasteners with special configurations including drilled heads, reduced body, etc., that are weaker than the threaded section. Special fasteners having full-size heads shall be tested as specified for studs and other bolts.

TABLE 4 Tensile Stress Areas and Threads per Inch

Nominal Size, in. (D)	Coarse Threads-UNC		Fine Threads-UNF		Thread Series-8 UN	
	Threads/in.	Stress Area ${ }^{\text {A }}$, in. ${ }^{2}$	Threads/in.	Stress Area ${ }^{\text {a }}$, in. ${ }^{2}$	Threads/in.	$\begin{aligned} & \text { Stress Area }{ }^{A} \text {, } \\ & \text { in. }{ }^{2} \end{aligned}$
1/4 (0.250)	20	0.0318	28	0.0364		\ldots
5/16 (0.3125)	18	0.0524	24	0.0580	. .	\ldots
3/18 (0.375)	16	0.0775	24	0.0878
7/16 (0.4375)	14	0.1063	20	0.1187	\ldots	\ldots
$1 / 2(0.500)$	13	0.1419	20	0.1599	\cdots	...
9/16 (0.5625)	12	0.1820	18	0.2030	\ldots	\ldots
5/8 (0.625)	11	0.2260	18	0.2560
$3 / 4(0.750)$	10	0.3340	16	0.3730
7/8(0.875)	9	0.4620	14	0.5090
1.000	8	0.6060	12	0.6630	. .	\ldots
$11 / 8(1.125)$	7	0.7630	12	0.8560	8	0.790
11/4 (1.250)	7	0.9690	12	1.0730	8	1.000
$13 / 8$ (1.375)	6	1.1550	12	1.3150	8	1.233
11/2 (1.500)	6	1.4050	12	1.5810	8	1.492

${ }^{A}$ Tensile stress areas are computed using the following formula:

$$
\begin{aligned}
A_{s} & =0.7854\left[D-\frac{0.9743}{n}\right]^{2} \\
A_{s} & =0.7854\left[D-\frac{0.9743}{n}\right]^{2}
\end{aligned}
$$

where:
$A_{s}=$ tensile stress area, in. ${ }^{2}$,
$D=$ nominal size (basic major diameter), in., and
$n=$ number of threads per inch.

8. Corrosion Resistance

8.1 Carbide Precipitation:

8.1.1 Rod, bar, and wire in the austenitic Alloy Groups 1, 2, and 3, except the free-machining grades, 303 and 303Se, used to make fasteners in accordance with this specification shall be capable of passing the test for susceptibility to intergranular corrosion as specified in Practice E of Practices A262.
8.1.2 As stated in Practice A262, samples may be subjected to the faster and more severe screening test in accordance with Practice A. Failing Practice A, specimens shall be tested in accordance with Practice E and be considered satisfactory if passing Practice E.

9. Dimensions

9.1 Bolts and Hex Cap Screws:

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee F16 on Fasteners and is the direct responsibility of Subcommittee F16.04 on Nonferrous Fasteners.
 Current edition approved Dec. 1, 2013. Published January 2014. Originally approved in 1978. Last previous edition approved in 2013 as F593-13. DOI: 10.1520/F0593-13A.10.1520/F0593-13AE01.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service @astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.

[^1]: ${ }^{3}$ Available from Global Engineering Documents, 15 Inverness Way, East Englewood, CO 80112-5704, http://www.global.ihs.com.

[^2]: ${ }^{A}$ When approved by the purchaser, Alloys 303, 303Se, or XM1 may be furnished.
 ${ }^{B}$ When approved by the purchaser, Alloy 430F may be furnished.
 ${ }^{c}$ When approved by the purchaser, Alloys 416 or 416 Se may be furnished.

[^3]: ${ }^{\text {A }}$ At manufacturer's option, determined only when intentionally added.

[^4]: ${ }^{A}$ Minimum values except where shown as maximum or as a range.
 ${ }^{B}$ Legend of conditions:
 A-Machined from annealed or solution-annealed stock thus retaining the properties of the original material, or hot-formed and solution-annealed.
 AF-Headed and rolled from annealed stock and then reannealed.
 AH -Solution annealed and age-hardened after forming.
 CW-Headed and rolled from annealed stock thus acquiring a degree of cold work; sizes 0.75 in. and larger may be hot worked and solution-annealed.
 H -Hardened and tempered at $1050^{\circ} \mathrm{F}\left(565^{\circ} \mathrm{C}\right)$ minimum.
 HT -Hardened and tempered at $525^{\circ} \mathrm{F}\left(274^{\circ} \mathrm{C}\right)$ minimum.
 SH-Machined from strain hardened stock or cold-worked to develop the specified properties.
 ${ }^{c}$ The yield and tensile strength values for full-size products shall be computed by dividing the yield and maximum tensile load values by the stress area for the product size and thread series determined in accordance with Test Methods F606 (see Table 4).
 ${ }^{D}$ Yield strength is the stress at which an offset of 0.2% gage length occurs.

