International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION+ME#ДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ+ORGANISATION INTERNATIONALE DE NORMALISATION

Hardmetals — Determination of total carbon content — Gravimetric method

Métaux-durs - Dosage du carbone total - Méthode gravimétrique

Second edition - 1985-02-01

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3907:1985 https://standards.iteh.ai/catalog/standards/sist/167b546e-dace-4ad1-a956-1ec55fa2736b/iso-3907-1985

UDC 621.762 : 546.26 : 543.21

Ref. No. ISO 3907-1985 (E)

Descriptors : powder metallurgy, carbides, sintered products, hardmetals, chemical analysis, determination of content, carbon, gravimetric analysis.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75 % approval by the member bodies voting. TANDARD PREVIEW

International Standard ISO 3907 was prepared by Technical Committee ISO/TC 119, *Powder metallurgy*.

ISO 3907 was first published in 1977. This second edition cancels and replaces the first edition, of which it constitutes a technical revision characteristic and sist/167b546e-dace-4ad1-a956-1ec55fa2736b/iso-3907-1985

© International Organization for Standardization, 1985 •

Hardmetals — Determination of total carbon content — Gravimetric method

iTeh STANDARD PREVIEW (standards.iteh.ai)

1 Scope

ISO 3907:1989 the ascarite, which corresponds to the quantity of carbon

This International Standard specifies a gravimetric method for determination of the total carbon content of carbides and hard- $C + O_2 \rightarrow CO_2$ metals.

2 Field of application

This method is applicable to

 carbides of chromium, hafnium, molybdenum, niobium, tantalum, titanium, vanadium, tungsten and zirconium,

- mixtures of these carbides and binder metals, free of lubricant,

 all grades of presintered or sintered hardmetals, produced from these carbides,

having a total carbon content exceeding 4 % (m/m).

3 Principle

Oxidation of carbon to carbon dioxide at high temperature in a stream of pure oxygen, with the addition of a flux if necessary.

Absorption of the carbon dioxide, carried by oxygen, by ascarite in a tared bulb. Determination of the increase in mass

 $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$

4 Reagents

During the analysis, use only reagents of recognized analytical grade, and only distilled water or water of equivalent purity.

4.1 Oxygen, with a limitation of carbon-containing impurities ≤ 0.6 ml of carbon per cubic metre of oxygen.

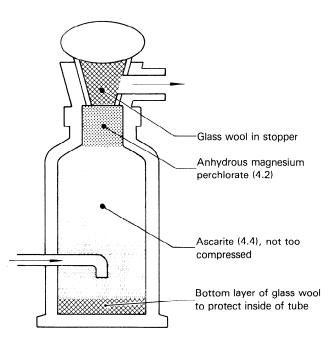
4.2 Magnesium perchlorate, anhydrous.

CAUTION — To prevent any possibility of explosion, contact of this reagent with organic materials should be avoided, especially when discarding it.

4.3 Flux, for example tin metal, copper metal or oxide, iron metal.

4.4 Ascarite.

5 Apparatus


Ordinary laboratory apparatus and

5.1 Apparatus, consisting of an electric furnace with a combustion tube, a purification train and a system to absorb carbon dioxide. If necessary to obtain oxygen of adequate purity, an oxygen purification train may also be used.

Successive parts of the apparatus shall be joined together with connecting tubes forming an airtight seal.

The apparatus is shown schematically in figure 1.

- A Source of oxygen (4.1), with pressure-regulating valve.
- B Flow meter.
- C Electric furnace, capable of operation at up to 1 350 °C, with a suitable device for temperature control.
- D Combustion tube, made of a non-porous refractory material. The internal diameter of the tube should be 18 to 30 mm and its length at least 650 mm, so that the ends of the tube do not reach a temperature higher than 60 °C during the operation.

Figure 2

iTeh STANDA5.2 Hook, made from heat-resisting metal wire with a carbon

E – Boat, made of a refractory material, pretreated in an content less than 0,05 % (m/m). Its diameter should be oxygen stream at the test temperature for 10 min or, alter- an approximately 3 mm and its length 500 to 600 mm. natively, at 800 to 1 000 °C for 1 h.

The boat shall be of suitable dimensions, for example length 80 in the available dimensions, for example length 80 in the available standards in the available standards in the available standards in the standar

The pretreated boats shall be kept in a desiccator. The ground surfaces of the desiccator and its lid shall not be greased.

- F Plug of silica wool.
- **G Drying bulb**, containing anhydrous magnesium perchlorate (4.2).
- **H Absorption bulbs**, containing ascarite (4.4) and a small amount of anhydrous magnesium perchlorate (4.2).

An example of an absorption bulb is shown in figure 2.

I – Absorption bulb, facing the opposite way to H to avoid introduction of carbon dioxide and moisture from the air. **6.1** The sample shall be crushed to a powder in a mortar made of a material which does not alter the sample composition. The powder shall pass a 180 μ m sieve.

6.2 The analysis shall be carried out on two or three test portions.

7 Procedure

Check the temperature in the combustion zone (1 200 to 1 350 °C and not less than 1 300 °C if chromium carbide is present), the gastightness of the apparatus and the efficiency of the oxygen purification. Pass oxygen through the apparatus for 10 to 15 min at a rate of 300 to 500 cm³/min depending on

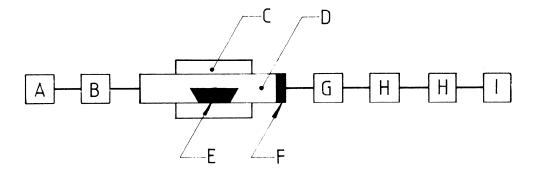


Figure 1

the diameter of the tube used. Then disconnect the absorption bulbs (H), weigh them at ambient temperature and replace them in position.

7.1 Test portion

The mass of the test portion (m_0) shall be such that it contains approximately 0,03 g of carbon, and shall be determined to the nearest 0,000 1 g.

If necessary, add to the test portion 0,2 to 1 g of the flux (4.3).

7.2 Blank test

Carry out the blank test by combustion (proceed as outlined in 7.3 and 7.4) in the presence of the quantity of flux used in the analysis, and carefully determine the increase in mass (m_1) of the absorption bulbs.

7.3 Combustion

Open the combustion tube at the oxygen inlet end and, using the hook (5.2), place the boat (E) containing the test portion (7.1) in the centre of the heated zone of the tube. Quickly close the tube and immediately pass a stream of oxygen at a rate of 300 to 500 cm³/min, depending on the diameter of the tube RD used. Continue to pass oxygen for 10 to 20 min so that the carbon dioxide is completely removed from the combustion tube and the purifying bulb.

remove the bulbs from the apparatus. After 5 min weigh the bulbs to the nearest 0,000 1 g. It is recommended that the fused mass in the boat be visually examined to verify that com-

bustion has been completed. The increase in mass represents

The carbon content, expressed as a percentage by mass, is

7.4 Determination

the carbon dioxide absorbed (m_2) .

Expression of results

where

 m_0 is the mass, in grams, of the test portion;

 m_1 is the mass, in grams, of carbon dioxide obtained from the blank test;

 m_2 is the mass, in grams, of the carbon dioxide obtained from the combustion of the test portion;

27,29 is the carbon dioxide to carbon conversion factor, multiplied by 100.

8.2 Tolerances

The deviation between two or three independent determinations shall not exceed the values shown in the table.

leterminations % (m/m)	determinations % (m/m)
0,05	0,06
0,07	0,08
	% (<i>m/m</i>) 0,05

Report the arithmetical mean of acceptable determinations ISO 3907:198 founded to the nearest 0,01 % (m/m).

https://standards.iteh.ai/catalog/standards/sist/167b546e-dace-4ad1-a956-Close the tap of the absorption bulbs (H) and immediately/iso-3907-1985

9 Test report

8.3 Final result

The test report shall include the following information :

a) reference to this International Standard;

b) all details necessary for the identification of the test sample;

c) the result obtained;

d) all operations not specified in this International Standard, or regarded as optional;

e) details of any occurrence which may have affected the result.

given by the formula

Calculation

8

8.1

3

iTeh STANDARD PREVIEW (standards.iteh.ai) This page intentionally left blank

ISO 3907:1985 https://standards.iteh.ai/catalog/standards/sist/167b546e-dace-4ad1-a956-1ec55fa2736b/iso-3907-1985

iTeh STANDARD PREVIEW (standards iteh ai) This page intentionally left blank

ISO 3907:1985 https://standards.iteh.ai/catalog/standards/sist/167b546e-dace-4ad1-a956-1ec55fa2736b/iso-3907-1985

iTeh STANDARD PREVIEW (standards iteh ai) This page intentionally left blank

ISO 3907:1985 https://standards.iteh.ai/catalog/standards/sist/167b546e-dace-4ad1-a956-1ec55fa2736b/iso-3907-1985