IEC-PAS 62085

Edition 1.0 1998-12

PUBLICLY AVAILABLE SPECIFICATION

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Reference number IEC/PAS 62085

JOINT INDUSTRY STANDARD

COORDINATED BY THE SURFACE MOUNT COUNCIL

INTERNATIONAL ELECTROTECHNICAL COMMISSION

IMPLEMENTATION OF BALL GRID ARRAY AND OTHER HIGH DENSITY TECHNOLOGY

FOREWORD

A PAS is a technical specification not fulfilling the requirements for a standard, but made available to the public and established in an organization operating under given procedures.

IEC-PAS 62085 was submitted by the IPC (The Institute for Interconnecting and Packaging Electronic Circuits) and has been processed by IEC technical committee 91: Surface mounting technology.

The text of this PAS is based on the following document:	This PAS was approved for publication by the P-members of the committee concerned as indicated in the following document:
Draft PAS	Report on voting
91/140/PAS	91/154/RVD

Following publication of this PAS, the technical committee or subcommittee concerned will investigate the possibility of transforming the PAS into an International Standard.

The following statement has been made by IPC (The Institute for Interconnecting and Packaging Electronic Circuits):

The IPC has the leadership position on this publication, as suggested by the Surface Mount Council. Any input or suggestion from other persons or organizations, not a part of the IPC membership, has been coordinated by the IPC during the development process.

The IEC and its members are authorized to exploit the following document:

J-STD-013 Implementation of ball grid array and other high density technology

under the PAS procedures for the purpose of international standardization.

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this PAS may be the subject of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

Material in this standard was voluntarily coordinated by the Surface Mount Council (SMC), and established by Technical Committees of IPC and EIA. Committee members of the two organizations contributed their time, knowledge and expertise to blend a cohesive report on the topic covered by this document. Proposals were sent to key individuals in each of the individual organizations for consensus. Meetings were held to resolve differences or conflicts prior to documenting the information in the final released version. The material contained herein is advisory and its use or adaptation is entirely voluntary. IPC and EIA disclaim all liability of any kind as to the use, application, or adaptation of this material. Users are also wholly responsible for protecting themselves against all claims or liabilities for patent infringement. Comments Welcome The J-STD-013 is intended to serve as a roadmap for ball grid array and other high-density technology implementation. In order to keep the document current, the Surface Mount Council welcomes comments from individuals reading the document, or implementing the suggested concepts. Comments may be sent to the EIA or IPC. All comments will be organized and sent to representatives of the Ad Hoc Committee responsible for the J-STD-013 for a yearly review and incorporation into the updating procedures.

Final Ballot Edition

The Surface Mount Council has authorized the special printing of this document in order to make the information available to industry experts for final ballot approval.

The official publication will be released for full industry circulation after the final editorial revision and completion of the balloting process by representatives of JEDEC. The results of those processes may initiate some changes. Once concensus has been reached, the official J-STD-013 will be printed and be supported by the three organizations, EIA, IPC, and JEDEC, and endorsed by Sematech and MCNC whose representatives participated and contributed to the development of this document.

J-STD-013 IMPLEMENTATION OF BALL GRID ARRAY AND OTHER HIGH-DENSITY TECHNOLOGY

This document is intended to report on the work being done by a variety of organizations concerned with surface mounting of area array packages or other high pin count package configurations. The details were developed by companies who have implemented the processes described herein and have agreed to share their experiences. Readers are encouraged to communicate to the appropriate trade association any comments or observations regarding details published in this document, or provide additional ideas and details that would serve the industry.

Section 8 of this document represents a listing of standards that are being developed, being updated, or need to be created in order to provide for the orderly implementation of Ball Grid Array, or other High-Density Technology. Members of the industry are invited to participate in the ongoing standardization process.

For additional information regarding material published herein or inquiries regarding the status of standardization activities, we urge you to contact the organization listed below.

IPC

The Institute for Interconnecting and Packaging Electronic Circuits 2215 Sanders Road Northbrook, IL 60062-6135 Telephone: (847) 509-9700 Fax: (847) 509-9798 EIA

Electronic Industries Association 2500 Wilson Blvd. Arlington, VA 22201-3834 Telephone: (703) 907-7552 Fax: (703) 907-7501

Acknowledgement

Any standard involving a complex technology draws material from a vast number of sources. While the principle members of the Ad Hoc committee are shown below, it is not possible to include all of those who assisted in the evolution of this document. To each of them, the members of the IPC and EIA extend their gratitude.

Ball Grid Array Technology Ad Hoc Committee

Chairman: Ray Prasad, Ray Prasad Consultancy Group

L. Abnagnaro, Pace Inc. George Arrigotti, Intel E.M. Aoki, Hewlett Packard R. Aspandiar, Intel Ron Boyce, Tektronix J.S. Burg, 3 M. Company Chusak Chamkasem, Hyundai Electronics America T. A. Carroll, Hughes Aircraft Leon Cohen, Formation J. Cordum, Teledyne Lewisburg T. Dixon Dudderar, AT&T Werner Engelmaier, Engelmaier & Assoc. Gerald K. Fehr, IPAC J. R. Finnell, National Semicondutor https://stancJoseph Fjelstad, Tessera 1 Martin G. Freedman, AMR Incorporated A. Funcell, Integrated Device Tech C. J. Gonzlez, SCI Manufacturing Gary W. Green, Cypress Semiconductor Greg Igo Amkor Electronics Inc. John Jackson, Sematech John Hoback, Amoco Chemical Albert Holliday, AT&T Bell Labs

Les Hymes, Les Hymes Associates A. Kaliszek, Honeywell Inc. G. W. Kenealey, GWK Enterprises, Inc. William Kenyon, Global Ctr for Process Change J.D. Leibowitz, Shirline Composites Inc. Nick Lycoudes, Motorola Paul Magill, MCNC S. R. Martell, Sonoscan Inc. Jack McMahon, Intel Corp. G. C. Munie, AT&T Bell Laboratories R. Perez, Compaq Computer Corp. E. Pope, Intel Corporation R. J. Prosman, IEEC/Binghamton Univ Jeff Robb, Lockeed Martin Robert Rowland, Fujitsu Computer Products 2085-1998 Craig A. St. Martin, II Vern Solberg, Tessera Frank S. Stein, Consultant G. Theroux, Honeywell Inc. Murli Tirumala, Intel Corp. K. D. Vance, NCR Corp. H. Waltersdorf, Thomas & Betts Corp. John Yantis, Texas Instruments

A special note of appreciation goes to the representatives of Intel who provided resources for a great deal of information regarding the subject of this publication, and to Motorola whose engineering personnel provided copies of their BGA mounting methodologies.

Table of Contents

4	\$00DF 1	4
1	SCOPE	4
1.1	Purpose 1	4
1.2	Categorization	4
1.5	Presentation	4
1.4	Producibility Levels 1	4
2	TECHNOLOGY OVERVIEW OF BOARD AND ASSEMBLY REQUIREMENTS	4
2.1	The Drivers for Component Packaging 4	
2.1.	1 The Thermal Drivers 4	4
2.1.	2 The Electric Drivers 5	4
2.1.	3 The Real Estate Drivers	4
2.1.	4 Specific Package Drivers	4
2.2	Issues in Component Packaging7	4
2.2.	1 Future Considerations 7	4
2.3	Impact on Interconnecting (Printed Board) Technology	4
2.4	Impact on Assembly	4
2.5	Future Implementation Strategies	10^{4}
2.5.	1 Complexity Matrix	4
•	(https://(tank	λ^4
3	COMPONENT PACKAGES	X
3.1	Component Identification	N ⁴
3.1.	1 Area Array Component Lypes 13	4
3.1.	2 Peripheral Leaded Devices Packages	<u>)85:1</u>
tps://st	3 Component Marking 14	1b03 <mark>4</mark>
3.2	Component Materials	5
3.2.	1 Ball/Column Termination 15	5
3.2.	2 Terminations Leads	5
3.2.	3 Plating and Coating Technologies 15	5
3.2.	4 Process Comparisons	5
3.2.	5 Plastic Packages	
3.2.	6 Ceramic Packages 17	5
3.2.	7 Die Attach 17	5
3.3	Heat Dissipation Techniques 17	5
3.3.	1 Conduction	5
3.3.	2 Convection	5
3.3.	3 Radiation	5
3.3.	4 Thermal Impedance	5
3.3.	5 Component Level Thermal Characteristics 21	5
3.3.	6 Board Level Thermal Management	5
3.4	Handling and Storage	5
3.4.	1 ESD	5
4	PACKAGE DETAILS	5
4.1	Area Array Package Description 25	5

	4.1.1	Physical Properties	25
	4.1.2	Bump/Termination Layout	26
	4.1.3	Standardization	27
	4.2.	BGA Types	27
	4.2.1	Plastic BGA	28
	4.2.2	Thermally Enhanced BGA	29
	4.2.3	Tab BGA	29
	4.2.4	Mini BGA	30
	4.2.5	Micro BGA	30
	4.2.6	Ceramic Ball Grid Array (CBGA)	30
	4.3	Materia Decisions	31
	4.3.1	Thin Film Redistribution	32
	4.3.2	Coplanarity	32
	4.3.3	"Popeorning Effect" Failure	32
,	A.4	Area Array Selection Process	32
_ (4.4.1	Device Outlines	32
//	4.4.7 /	Array Population	33
n C	4.5	Peripheral Lead Package Descriptions	33
	4.5.1	Lead Pitch Parameters	34
\searrow	4.5.2	Standard SMT	35
$\overline{\ }$	4.5.3	Fine Pitch Packages	35
N	4.5.4	Ultra Fine Pitch Packages	35
)	4.6	Sockets	35
	4.6.1	ZIF Sockets	36
	4.6.2	LIF Sockets	36
	5 INTE	ERCONNECTING STRUCTURES	36
	5.1	Interconnecting Structure Descriptions	36
	5.1.1	Rigid Printed Boards	37
	5.1.2	Flexible Printed Wiring Boards	38
	5.1.3	Encapsulated Discrete Wire Interconnection Boards	40
	5.1.4	Nonorganic (Ceramic) Structures	40
	5.2	Material Selection	42
	5.2.1	Reinforcement Material Properties	42
	5.2.2	Resin Types	43
	5.2.3	Permanent Polymers (Solder Resist)	44
	5.2.4	Metallic Foils and Films	44
	5.3	Manufacturing Options	44
	5.3.1	Physical Parameters	44
	5.3.2	Image Transfer	45
	5.3.3	Feature characteristics (Size, Shape, Tolerances)	45
	5.4	Conductor Routing Methodologies	45
	5.4.1	Wiring Via Densities	45
	5.4.2	Conductors Geometries	47

5.4.3	Signal Routing	48		Failure	
5.4.4	Fine Line/Circuit Layer Trade-offs	48		Probability	68
5.5	Test Methodology	48	7.2.3	Damage Modeling	69
5.5.1	Electrical Continuity	48	7.2.4	Caveat 1 — Solder Joint Quality	70
5.5.2	Electrical High Frequency	48	7.2.5	Caveat 2 — Large Temperature Excursions	70
5.5.3	High Acceleration Stress Test	48	7.2.6	Caveat 3 — High-Frequency/ Low-Temperatures	70
6 AS	SEMBLY PROCESSES	50	7.2.7	CAVEAT 4 — Local Expansion Mismatch	70
6.1	Assembly Classification	50	7.2.8	Caveat 5 — Very Stiff Leads	71
6.1.1	Process Flow, Type 1	50	7.2.9	Caveat 6 — Very Soft Leads/Very Large	
6.1.2	Process Flow, Type 2	50		Expansion Mismatches	71
6.2	Assembly Materials	50	7.2.10	Multiple Cyclic Load Histories	71
6.2.1	Surface Mount Adhesives	50	7.2.11	System Reliability Evaluation	72
6.2.2	Conductive Adhesives	51	7.3	DfR-Process	72
6.2.3	Soldering Fluxes	51	7.4	Validation and Qualification Tests	73
6.2.4	Solder Alloys	52	7.5	Screening Proceedures	73
6.2.5	Solder Paste	53	7.5.1	Solder Joint Defects	73
6.3	Equipment Characteristics	53	7.5.2	Screening Recommendations	73
6.3.1	Adhesive and Solder Paste Application	53	7.6	Refiability Expectations	73
6.3.2	Placement	. 54	7.6.1	Life Expectancy	73
6.3.3	Fiducial Targets	. 55	7.6.2	Use Environments	74
6.3.4	Soldering		7.6.3	Electrical Testing/Performance	74
6.3.5	Cleaning (General).		7.6.4	Burn In	74
6.3.6	Rework	61	7.6.5	Report Performance Simulation	74
6.4	Package Attachment Process Details				75
6.4.1	Substrate Preparation		8.0	Standarda for Development	15 75
642	Component Preparation	62	8.1	Standards for Development	15
643	Heat Sink Attachment	62	8.2085	Performance Standards	75 100
6.4.4	Process Control	. 62	8.2.1	Ball Grid Array Component Design	75
645	Process Comparison	62	8.2.2	Performance Requirements for	
6.5	Assembled Board Test	63		Solder Bumps	75
651	Test Strategy	63	8.3	Standard on Mounting of Substrate Design	
652	In-Circuit ATP Accest	63		and Performance	76
653	Locating Open Solder Joints at ATE	05 64	8.3.1	Design Standard for Ball Grid Array	76
654	Functional Test	64	022	Package Mounting	/0
655	Manual Access for Debug (at ATE or	04	8.3.2	Mounting Structures intended for BGA	
0.5.5	Functional Test)	64		Mounting	76
7 05		65	8.3.3	Qualification and Performance of Inorganic	
	Damage Machanisms and Feilure of	03		Mounting Structures Intended for BGA	76
/.1	Solder Attachments	65	024	Mounting	/0
7.1.1	Solder Joints and Attachment Types	. 65	8.3.4	In-process Test Methods used for Organic/	
7.1.2	Global Expansion Mismatch	66		Inorganic Flip Chip Mounting Structures	76
7.1.3	Local Expansion Mismatch	67	8.4	Ball Grid Array/Substrate Assembly Design	
7.1.4	Internal Expansion Mismatch	67		and Performance Standards	76
7.1.5	Solder Attachment Failure	67	8.4.1	Ball Grid Array Assembly Design	77
7.2	Reliability Prediction Modeling	68	8.4.2	Assembly Performance Requirements	77
7.2.1	Creep-Fatigue Modeling	68	8.4.3	Assembly Test Methods	77
7 2 2	Statistical Failure Distribution and				

8.4.4	Qualification and Performance of Rework and Repair of BGA Assembly
8.5	Standards for Material Performance 77
8.5.1	Flux for BGA Mounting Applications 77
9 FUT	TURE NEEDS
9.1	Critical Factor: Manufacturing Infrastructure 78
9.1.1	Materials
9.1.2	Equipment 78
9.1.3	Design
9.2	Critical Factor: Bump Attachment and Bonding
9.2.1	Dimensional Control
9.2.2	Metallurgical Integrity 79
9.2.3	Cleanliness of Bumping Site 79
9.3	Critical Factor: Testing Scenarios 79
9.3.1	Critical Environmental Testing 79
9.3.3	Inspection and Process Control Assurance 79
9.4	Total Quality Management and Manufacturing (TOMM)
	(1, 21, 11, 11, 11, 11, 11, 11, 11, 11, 1

9.4	10	tal Quality Management and	(c
	Ma	anufacturing	
	(1)	QMM)	
		i Text Xea	in da
		Figures	, F
		(https://tand	$\langle \mathbf{X} \rangle$
Figure	1–1	Electronic Assembly Types	2 F
Figure	2–1	Common Lead Pitches in Package Family	3
Figure	2–2	Component Packaging Requirements for Different Types of Systems	F
Figure	2–3	Thermally Enhanced Package	3085:1
Figure	2-4	I/O Pitch Mounting Area Comparisons	31b03 _∈
Figure	2–5	The Move from Present to Future Requirements	
Figure	2–6	Board, Routing Area Study	9
Figure	2–7	Typical Cost Curves - Cost vs. Finished VIA Hole	. F
Figure	2-8	Typical Cost Curves - Cost vs. Number of Layers	F
Figure	2–9	Coplanarity Example of QPF Solder Opens 1'	I F
Figure	2–10	Stand-off vs. Cleanability 12	2
Figure	2–11	Component Packages with Leads Around Perimeter	F 2 F
Figure	2–12	Component Packages with Leads Underneath in Array Format	2 F
Figure	3–1	Pin Grid Array	B F
Figure	3–2	Example of Device Package Marking 14	4 F
Figure	3–3	Solder/Coating/Plating Process Comparison 16	ο F
Figure	3–4	Temperature Differences Attainable as a Function of Heat Flux	F B _
Figure	3–5	Heat Flux vs. Temperature Level	э –
Figure	3–6	Effect of Package on Thermal Resistance of	, F
Figure	3–7	Effect of PC Board Material Size on Thermal Resistance of 132-Lead PQFP	- F 2 F

Figure	3–8	Effect of Air Flow Rate on Thermal Resistance of 168-Lead PGA Package	of 22
Figure	3–9	Standard ESD Symbols	23
Figure	3–10	Moisture Level Indicator	24
Figure	4–1	Ball Grid Array Devices Furnish with Die Mounte on Top Surface and Bottom Side for Cavity Dow 26	əd /n .
Figure	4–2	Stand Off Height	26
Figure	4–3	Land Pattern Comparisons	27
Figure	4–4	Signal Routing Approaches	27
Figure	4–5	Contact Patterns	28
Figure	4–6	Physical Outline of BGA Package Specifications (Ref. JEDEC Publication No. 95)	; 28
Figure	4–7	Cavity-up and Cavity-down Chip Mounting	28
Figure	4–8	Plastic BGA Cross Section	29
Figure	4–9	Thermally Enhanced BGA.	29
Figure	4–10	Cross-Section of a TBGA Package	30
Figure	4-14	On-Chip Pad Redistribution (Sandia Mini BGA). 38	
Figure	4-12	Micro BGA	31
Figure	4–13	Cross-Section of CBGA	31
Variation	s - 1.5	0 Pitch	n al
Figure	4-14	IO Count	na 33
Figure	4-15	Both Even and Odd Column and Row Patterns Are Permitted in the JEDEC Standards	34
Figure	4–16	Depopulated and Staggered	34
Figure	4–17	PLCC (Square)	35
Figure	4–18	FQFP Construction	35
Figure	4–19	TQFP & QFP (Square)	36
Figure	5–1	Multilayer Construction	46
Figure	5–2	Solder Mask Defined Land Patterns for CBGA and PBGA	46
Figure	5–3	Land Defined Land Patterns for CBGA and PBG	6A 47
Figure	5–4	PWB Top Surface Including Vias	48
Figure	5–5	First Two Rows of the Array Escape on the Top Surface	49
Figure	6–1	Assembly Classification Examples	51
Figure	6–2	Simplified Process Flow for Type 1 and Type 2 Assemblies	52
Figure	6–3	Stencil Opening Aspect Ratio	55
Figure	6–4	Binary and Gray Scale Image Comparison	56
Figure	6–5	Fiducial Locations on a Printed Circuit Board	58
Figure	7–1	Description of the Effects of the Accumulating Fatigue Damage in Solder Joint Structure	66
Figure	8–1	Component Design	75
Figure	8–2	Bump Performance	76
Figure	8–3	Mounting Structure Design	76
Figure	8–4	Organic MIS Performance	76
Figure	8–5	Inorganic MIS Performance	76
Figure	8–6	Mounting Structure Test Methods	77
Figure	8–7	BGA and Hi-Density Component Assembly	77
Figure	8–8	BGA & Hi-Density Assembly Performance	77

Figure 8	3–9	Assembly	Test Methods	77
Figure 8	8–10	Assembly	Rework and Repair	78
Figure 8	8–11	Flux Perfo	rmance	78

Tables

Table 1-1	Choice of Packages 1
Table 3-1	
Table 3-2	Transfer Coefficient as a Function of Fluid Choice. 21
Table 3-3	Classification and Floor Life of Desiccant Packed Components
Table 4–1	
Table 5-1	Comparison of Selected Material Properties 38
Table 5–2	
Table 5-3	Physical Characteristics of Nonorganic Substrates
Table 5-4	Number of "Escapes" Versus Array Size on Two PWB Layers
Table 5-5	Ball/Column Grid Array Signal Routing Guidelines. 49
Table 6-1	Solder Alloy Characteristics 53
Table 6-2	Dispensing Method Comparisons
Table 6-3	Stencil Creation Method Comparison
Table 6-4	Placement Capability - Binary Verses Gray Scale
Table 6–5	Surface Mount Processes Comparison
Table 7–1	Realistic Representative Use Environments, Service Lives, and Acceptable Failure Probabilities for Surface Mounted Electronics by Use Categories
Table 7-2	Failure Mode Control Techniques
Table 7-3	Class to Environment Correlation

-1b03-4c53-8222-c404c75cb441/iec-pas-62085-1998

.iteh.ai)

eview

Implementation of Ball Grid Array and Other High Density Technology

1 SCOPE

This document establishes the requirements and interactions necessary for Printed Board Assembly processes for interconnecting high performance/ high pin count I/C packages. Included is information on design principles, material selection, board fabrication, assembly technology, testing strategy, and reliability expectations based on end-use environments.

The focus of the document is on design through testing issues related to Ball Grid Array and other high performance packages including fine pitch, ultra fine pitch and thru-hole PGA.

1.1 Purpose

The purpose of this document is to provide confidence in the Design through Testing processes to ensure that the final assembly will meet the intended goals for product performance. Reliability is established through end use environments that consider the performance requirements of assemblies that are used in electronic products in such markets as consumer, computer, telecommunication, commercial aircraft, industrial & automotive passenger compartment, military ground & ship, space (both LEO and GEO), military avionics, and automotive underhood electronics and the customary use of those equipments.

1.2 Categorization

The details contained herein are organized according to the various issues and are correlated to the specific high pin count, high performance type I/C packages. These include:

· · · · · · · · · · · · · · · · · · ·	
• BGA	Ball Oxid Array
• CBGA	Cerangic Ball Grid Array
• CCGA	Ceramic Column Grid Array
• TBGA	Tab Ball Grid Array
• MBGA	Metal Ball Grid Array
• PPGA	Plastic Pin Grid Array
• PGA	Pin Grid Array (Standard and Stag-
	gered Pins)
• SGA	Stud Grid Array (Surface Mount Ver-
	sion of PGA)
• LGA	Land Grid Array
	* Plastic
	* Ceramic
• QFP	Quad Flat Pack
• CQFP	Ceramic Quad Flat Pack
• SSOP	Shrink Small Outline Package
• TSOP	Thin Small Outline Package
• TQFP	Thin Quad Flat Pack

• FQFP	Fine	Pitch	Quad	Flat	Pack	

- LQFP Low Profile Quad Flat Pack
- SVP Surface Vertical Package (Post Stand/ Lead Stand)

Organization of the information is initially provided in accordance to the specific processes (i.e. Design-Fabrication-Assembly-Test). Component information is organized with emphasis on area array type packages. Although there is some discussion of the peripheral format, the major emphasis is on the decision process that forces the manufacturing direction into the area array type package. Table 1-1 indicates the packages of choice in various integration of semiconductor technology. Usually the tradeoffs switch from peripheral packages to array type packages at 208 pins or below 0.5 mm pitch on the peripheral package.

Table 1-1	Choice of	Packages
-----------	-----------	----------

K	Semiconductor Integration	Number of Pins, Leads or Balls	Package Types
	ssi e la	16-48	SOIC
	MSI	48-156	QFP/PGA/BGA
7	CE LSIE	156-256	BGA/QFP (0.5, 0.4, 0.3 mm pitch) and PGA
5:	1998 VLSI	256-500	BGA/PGA
03	-4c5ULS122-c4)4c75c>5001/iec-	pas-62BGA-1998

1.3 Presentation

All dimensions and tolerances in this standard are expressed in metric units, with millimeters being the main form of dimensional expression. Inches may be shown in brackets as appropriate and are not always a direct conversion depending on the round-off concept or the required precision. Users are cautioned to employ a single dimensioning system and not intermix millimeters and inches. Reference information is shown in parentheses ().

1.4 Producibility Levels

The Surface Mount Council, in their "Status of the Technology, Industry Activities and Action Plan" identified several levels of complexity based on manufacturing and assembly processes for electronic assembly. A differentiation was developed that correlated the ease with which an assembly process could place, and attach all the parts and test the final product. Letters were assigned to reflect progressive increases in sophistication of tooling, materials or number of processing steps.

Figure 1–1 Electronic Assembly Types