

Designation: B111/B111M - 11 B111/B111M - 16

Standard Specification for Copper and Copper-Alloy Seamless Condenser Tubes and Ferrule Stock¹

This standard is issued under the fixed designation B111/B111M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope*

1.1 This specification² establishes the requirements for seamless tube and ferrule stock of copper and various copper alloys up to 3½ in. [80 mm] inclusive, in diameter, for use in surface condensers, evaporators, and heat exchangers. The following coppers and copper alloys are specified: Warning—Mercury is a definite health hazard in use and disposal. (See 12.1.))

Copper or Copper Alloy UNS No.	Previously Used Designation	Description
C10100	OFE	Oxygen-free electronic
C10200	OF^A	Oxygen-free without residual deoxidants
C10300		Oxygen-free, extra low phosphorus
C10800	• • • •	Oxygen-free, low phosphorus
C12000	DLP^{A}	Phosphorized, low residual phosphorus
C12200	DHP ^A	Phosphorized, high residual phosphorus
C14200	DPA ^A	Phosphorized, arsenical
C19200	(1.44	Phosphorized, 1 % iron
C23000	(nttos://star	Red Brass
C28000		Muntz Metal
C44300	D	Admiralty Metals, B, C, and D
C44400	Decume	nt Preview
C44500		···
C60800	• • •	Aluminum Bronze
C61300	• • •	
C61400	ASTM B	Aluminum Bronze, D
C68700		Aluminum Brass, B
https://starC70400	iteh.ai/catalog/standards/sist/785cabb	95-5 Copper-Nickel 800c-098da366dc44/astm-b111-b111m-16
C70600	• • • • • • • • • • • • • • • • • • • •	90-10 Copper-Nickel
C70620	• • •	90-10 Copper-Nickel—Welding Grade
C71000	• • •	80-20 Copper-Nickel
C71500	• • •	70-30 Copper-Nickel
C71520	• • •	70-30 Copper-Nickel—Welding Grade
C71640	• • •	Copper-nickel-iron-manganese
C72200	• • •	•••

^A Designations listed in Classification B224.

1.3 The following safety hazards caveat pertains only to the test methods portion, Section 19, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

^{1.2} *Units*—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

¹ This specification is under the jurisdiction of ASTM Committee B05 on Copper and Copper Alloys and is the direct responsibility of Subcommittee B05.04 on Pipe and Tube.

Current edition approved Oct. 1, 2011Oct. 1, 2016. Published November 2011 November 2016. Originally approved in 1937. Last previous edition approved in 20092011 as B111/B111M-09.—11. DOI: 10.1520/B0111_B0111M-11.10.1520/B0111_B0111M-16.

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SB-111 in Section II of the Code.

³ The UNS system for copper and copper alloys (see Practice E527) is a simple expansion of the former standard designation system accomplished by the addition of a prefix "C" and a suffix "00." The suffix can be used to accommodate composition variations of the base alloy.

(Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Safety Data Sheet (SDS) for additional information. Users should be aware that selling mercury and/or mercury containing products in your state or country may be prohibited by law.)

2. Referenced Documents

- 2.1 The following documents in the current issue of the *Annual Book of ASTM Standards* form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards:⁴
 - B153 Test Method for Expansion (Pin Test) of Copper and Copper-Alloy Pipe and Tubing
 - B154 Test Method for Mercurous Nitrate Test for Copper Alloys
 - B170 Specification for Oxygen-Free Electrolytic Copper—Refinery Shapes
 - **B224** Classification of Coppers
 - B846 Terminology for Copper and Copper Alloys
 - B858 Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys
 - E8B968/B968M Test Methods for Tension Testing of Metallic Materials Flattening of Copper and Copper-Alloy Pipe and Tube
 - E8ME8/E8M Test Methods for Tension Testing of Metallic Materials [Metric] (Withdrawn 2008)
 - E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
 - E53 Test Method for Determination of Copper in Unalloyed Copper by Gravimetry
 - E54 Test Methods for Chemical Analysis of Special Brasses and Bronzes (Withdrawn 2002)⁵
 - E62 Test Methods for Chemical Analysis of Copper and Copper Alloys (Photometric Methods) (Withdrawn 2010)⁵
 - E75 Test Methods for Chemical Analysis of Copper-Nickel and Copper-Nickel-Zinc Alloys (Withdrawn 2010)⁵
 - E76 Test Methods for Chemical Analysis of Nickel-Copper Alloys (Withdrawn 2003)⁵
 - E112 Test Methods for Determining Average Grain Size
- E118 Test Methods for Chemical Analysis of Copper-Chromium Alloys (Withdrawn 2010)⁵
- E243 Practice for Electromagnetic (Eddy Current) Examination of Copper and Copper-Alloy Tubes
- E255 Practice for Sampling Copper and Copper Alloys for the Determination of Chemical Composition
- E478 Test Methods for Chemical Analysis of Copper Alloys
- E527 Practice for Numbering Metals and Alloys in the Unified Numbering System (UNS)
- E2575 Test Method for Determination of Oxygen in Copper and Copper Alloys

3. Terminology

- 3.15 Definitions: s. iteh.ai/catalog/standards/sist/785cabbb-19ea-46b7-800c-098da366dc44/astm-b111-b111m-16
- 3.1.1 For definitions of terms relating to copper and copper alloys, refer to Terminology B846.
- 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 capable of—the test need not be performed by the producer of the material. However, should subsequent testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Include the following <u>information specified choices</u> when placing orders for product under this <u>specification</u>: <u>specification</u>, as applicable:
 - 4.1.1 ASTM Designation and year of approval (for example, ASTM issue; B111/B111M 04),
 - 4.1.2 Copper or Copper Alloy UNS No. Designation (see Table 1););
 - 4.1.3 Form (tube or ferrule stock),
 - 4.1.3 Temper (see(Section <u>7</u>Temper section),);
- 4.1.4 Dimensions, outside diameter, and wall thickness, whether minimum or nominal (Dimensions (Section 14 and Permissible Variations Section););
 - 4.1.5 How furnished (tube or ferrule stock);
 - 4.1.6 Quantity—total weight or total length or number of pieces of each size, size; and
- 4.1.7 If product is purchased for agencies of the U.S. Government (see the Supplementary Requirements Section). Intended application.

⁴ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁵ The last approved version of this historical standard is referenced on www.astm.org.

TABLE 1 Chemical Requirements

Copper or	Composition, %												
Copper Alloy UNS No.	Copper ^A	Tin	Aluminum	Nickel, incl Cobalt	Lead, max	Iron	Zinc	Manganese	Arsenic	Antimony	Phosphorus	Chromium	Other Named Elements
C10100	99.99 min ^B	0.002 max		0.0010 max	0.0005 max	0.0010 max	0.0001 max	0.00005 max	0.0005 max	0.0004 max	0.0003 max	0.0001 max	<u>c</u>
C10100	99.99 min ^A	0.0002 max	···	0.0010 max ^B	0.0005 max	0.0010 max	0.0001 max	0.00005 max	0.0005 max	0.0004 max	0.0003 max	0.0001 max	<i>C</i>
C10200 ^D	99.95 min												<u>D</u>
C10200 ^C	99.95 min ^D	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>		<u></u>	<i>c</i>
C10300	99.95 min ^E				===						0.001-0.005		-
C10300	99.95 min ^D	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>		<u></u>	<u></u>	<u></u>	0.001-0.005		<u></u>
C10800	99.95 min ^E										0.005-0.012		
C10800	99.95 min ^D		· · ·	<u></u>			<u></u>				0.005-0.012	<u></u>	
C12000 ^E	99.90 min ^D	· · ·		···	· · ·	· · ·		<u></u>		· · · ·	0.004-0.012		
C12200_	99.9 min ^D										0.015-0.040		
C14200	99.40 min								0.15-0.50		0.015-0.040 0.015-0.040		
C14200	99.4 min ^D					· · ·					0.015-0.040		• • • •
		····	····	····	····	0 0 1 0	0.00	···	0.15-0.50	····		····	····
C19200	98.5 min					0.8–1.2	0.20 max				0.01-0.04		
C23000	84.0–86.0				0.05	0.05 max	remainder						
C28000	59.0-63.0				0.09	0.07 max	remainder	. d a					
C44300	70.0–73.0	0.9-1.2			0.07	0.06 max	remainder	U.S	0.02-0.06				
C44400	70.0-73.0	0.9-1.2			0.07	0.06 max	remainder			0.02-0.10			
C44500	70.0-73.0	0.9-1.2			0.07	0.06 max	remainder	• 4			0.02 - 0.10		
C60800	remainder ^D		5.0-6.5		0.10	0.10 max	a ra c	itah	0.02 - 0.35				
C61300	remainder	0.20 0.50	6.0 7.5	0.15 max	0.01	2.0 3.0	0.10 max	0.20 max			0.015 max		<u>F,G</u>
C61300	remainder ^D	0.20-0.50	6.0-7.5	0.15 max	0.01	2.0-3.0	0.10 max	0.20 max	<u></u>	<u></u>	0.015 max	<u></u>	F, G
C61400	remainder ^D		6.0-8.0		0.01	1.5–3.5	0.20 max	1.0 max			0.015 max		
C68700	76.0–79.0 [□]		1.8–2.5		0.07	0.06 max	remainder	A TĠ ŸA	0.02-0.06				
C70400	remainder $^{\overline{D}}$			4.8–6.2	0.05	1.3–1.7	1.0 max	0.30-0.8					
C70600	remainder $^{\overline{D}}$			9.0–11.0	0.05	1.0–1.8	1.0 max	1.0 max					
C70620	86.5 min ^D			9.0-11.0	0.02	1.0-1.8	0.50 max	1.0 max			0.02 max		C.05 max
C70020	00.5 11111_	• • •		9.0-11.0	0.02 AS	TM BIN E	0.50 IIIax	1.0 max		• • •	0.02 max	• • •	S.02 max
C71000	remainder ^D			19.0–23.0	0.05 ^H	0.50-1.0	1.0 max ^H	1.0 max			Н		Н
C71500	remainder $^{\overline{D}}$			29.0–33.0	0.05	0.40-1.0	1.0 max	1.0 max					
C71520	65.0 min ^D			29.0-33.0	6h7-0.02)c-0	98 0.40-1.0	0.50 max	1.0 max			0.02 max		C.05 max
07 1020	00.0 11111	• • •		23.0 00.0	-00/-0.02/0-0	7 6 6.40 1.0 (1)	0.00 max	UTI.O-IIIAXII			0.02 max		S.02 max
C71640	remainder_			29.0–32.0	0.05 ^H	1.7–2.3	1.0 max ^H	1.5–2.5			Н		C.06 max S.03 max ^H
C72200	remainder_			15.0–18.0	0.05 ^H	0.50-1.0	1.0 max ^H	1.0 max			Н	0.30-0.70	Si.03 max Ti.03 max ^H

^A Copper (including silver).

^A This value is exclusive of silver and shall be determined by difference of "impurity total" from 100 %. "Impurity total" is defined as the sum of sulfur, silver, lead, tin, bismuth, arsenic, antimony, iron, nickel, mercury, zinc, phosphorus, selenium, tellurium, manganese, cadmium, and oxygen present in the sample.

^B Not including Cobalt

Clmpurity Additional impurity maximums in ppmpercent for alloy C10100 shall be: antimony 4, arsenic 5, bismuth 1, eadmium 1, iron 10, lead 5, manganese 0.5, mercury 1, nickel 10, oxygen 5, phosphorus 3, selenium 3, silver 25, sulfur 15, tellurium 2, tin 2, and zinc 1.bismuth 0.0001, cadmium 0.0001, oxygen 0.0005, selenium 0.0003, sulfur 0.0015, tellurium 0.0002, mercury 0.0001. For C10200, oxygen should be 0.0010 max.

Downgen in C10200 shall be 10 ppm max. Copper (including silver).

E Copper plus sum of named elements shall be 99.95 % min. This includes oxygen-free Cu which contains P in an amount agreed upon.

F-Silicon Shall be 0.10 % max.

^G When the product is for subsequent welding applications and is so specified by the purchaser, chromium shall be 0.05 % max, cadmium 0.05 % max, zinc 0.05 % max, and zirconium 0.05 % max.

H When the product is for subsequent welding applications, and so specified by the purchaser, zinc shall be 0.50 % max, lead 0.02 % max, phosphorus 0.02 % max, sulfur 0.02 % max, and carbon 0.05 % max.

- 4.2 The following options are available and should be but may not be included unless specified at the time of placing of the order when required:
 - 4.2.1 Tension Test required per ASME Boiler and Pressure Vessel Code, Mechanical Properties Code (see Section 8section.).
 - 4.2.2 Pressure Hydrostatic or pneumatic test as an alternative to eddy current test (Nondestructive (Section 13Testing Section).).
 - 4.2.3 If the cut ends of the tubes do not need to be deburred (Workmanship, (Section 15 Finish, and Appearance section).).
 - 4.2.4 If the product is to be subsequently welded (Table 1, Footnotes G and H).
 - 4.2.5 Residual Stress Test—Ammonia Vapor Test or Mercurous Nitrate Test (Performance(Section 12 Requirements Section).).
 - 4.2.6 For Ammonia Vapor Test, risk level (pH value) if other than 10.
 - 4.2.7 Heat identification or traceability details (Number of tests and Retests section):details.
 - 4.2.8 Certification (Certification (Section 23 Section).).
 - 4.2.9 Mill-Test Report (Mill(Section 24 Test Report Section).).
 - 4.2.10 If a subsequent thermal treatment after straightening is required (Temper(Section 7section).).
- 4.2.11 If product is purchased for agencies of the U.S. Government (see Supplementary Requirements section of this specification for additional requirements, if required).

5. Materials and Manufacture

- 5.1 *Materials*—*Materials*: The material shall be of such quality and purity that the finished product shall have the properties and characteristics prescribed in this specification.
- 5.1.1 The material of manufacture shall be a form of such purity and soundness as to be suitable for processing into the products prescribed herein.
- 5.1.2 When specified in the contract or purchase order that heat identification or traceability is required, the purchaser shall specify the details desired.⁶
- 5.2 Manufacture—Manufacture: The product shall be produced by processes such as casting, extrusion, drawing, annealing, straightening, trimming, and other processes which may produce a seamless tube in the specified condition.
- 5.2.1 The product shall be manufactured by such hot-working, cold-working, annealing, straightening, trimming, and other processes as to produce a uniform seamless tube in the finished product.
- 5.2.2 The product shall be hot- or cold-worked to the finished size, and subsequently annealed, when required, to meet the temper properties specified.

6. Chemical Composition

- 6.1 The product shall conform to the chemical composition requirements specified in Table 1.
- 6.2 These composition limits do not preclude the presence of other elements. <u>Limits for unnamed elements By agreement between the manufacturer and purchaser, limits may be established by agreement between manufacturer or supplier and purchaser.</u> and analysis required for unnamed elements.
- 6.2.1 Copper Alloy UNS No. C19200—Copper may be taken as is the difference between the sum results of all the elements analyzeddetermined and 100 %. When all the elements in Table 1 are analyzed, determined, their sum shall be 99.8 % minimum.
- 6.2.2 For eopper alloys in which copper is specified as the remainder, copper may be taken as "remainder," copper is the difference between the sum results of all the elements analyzed determined and 100 %. When all elements in Table 1 are determined, the sum of the results shall be as follows:

⁶ Due to the discontinuous nature of the processing of castings into wrought products, it is not always practical to identify a specific casting analysis with a specific quantity of finished material.

Copper Alloy UNS No.	Copper Plus Named
Copper Alloy ONS No.	Elements, % min
C60800	99.5
C61300	99.8
C61400	99.5
C70400	99.5
C70600 & C70620	99.5
C71000	99.5
C71500 & C71520	99.5
C71640	99.5
C72200	99.8

6.2.2.1 When all the elements in Table 1 are analyzed, their sum shall be as shown in the following table:

Copper Alloy UNS No.	Copper Plus Named
	Elements, % min
C60800	99.5
C61300	99.8
C61400	99.5
C70400	99.5
C70600 & C70620	99.5
C71000	99.5
C71500 & C71520	99.5
C71640	99.5
C72200	99.8

6.2.3 For copper-alloys in which zinc is specified as the remainder, either copper or zinc may be taken as the difference between the sum of all the elements analyzed determined and 100 %. When all elements in Table 1 are determined, the sum of the results shall be as follows:

Copper Alloy UNS	No	Copper Plus Named
Copper Alloy ONS	<u> </u>	Elements, % min
C23000		99.8
C28000		99.7
C44300		99.6
C44400		99.6
C44500		99.6
C68700		99.5

6.2.3.1 When all the elements in Table 1 are analyzed, their sum shall be as shown in the following table:

Copper Alloy	Copper Plus Named
UNS No.	Elements, % min
C23000 ASTM B	111/B111M-16 99.8
https://standards.iteh.ai/catalc C28000 dards/sist/785cabh	b-19ea-46b7-800c-098da366dc 99.7 astm-b111-b111m-16
C44300	99.6
C44400	99.6
C44500	99.6
C68700	99.5

7. Temper

- 7.1 Tubes of Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, C68700, and C71000 shall be furnished in the annealed (O61) temper unless otherwise specified temper designations identified in Tables 2 and 3 on the purchase order.
 - 7.1.1 Drawn tempers H55 and H80.
 - 7.1.2 Annealed temper O61.
 - 7.1.3 Drawn and stress-relieved temper HR50.
- 7.2 Tubes of Copper Alloy UNS Nos. C71500, C71520, and C71640 shall be supplied in one of the following tempers as specified: (1) annealed (O61) or (2) drawn, and stress-relieved (HR50).
- 7.3 Tubes of Copper Alloy UNS Nos. C10100, C10200, C10300, C10800, C12000, C12200, and C14200 shall be supplied in any one of the following tempers, one of which shall be specified: (1) light-drawn (H55), (2) hard-drawn (H80), or (3) hard drawn and end annealed (HE80).
- 7.4 Tubes of Copper Alloy UNS No. C19200 shall be supplied in any one of the following tempers, one of which shall be specified: (1) annealed (O61), (2) light-drawn (H55), (3) hard-drawn (H80), or (4) hard-drawn, and end-annealed (HE80).
- 7.5 Tubes of Copper Alloy UNS Nos. C70400, C70600, C70620, and C72200 may be supplied in either light-drawn (H55) or annealed (O61) temper.
 - 7.2 Tubes for ferrule stock shall be annealed sufficiently to be fully recrystallized.

7.3 Optional Post-Straightening Thermal Treatment—Some tubes, when subjected to aggressive environments, may have the potential for stress-corrosion cracking failure due to the residual stresses induced during straightening processing. For such applications, it is suggested that tubes of Copper Alloy UNS Nos. C23000, C28000, C44300, C44400, C44500, C60800, C61300, C61400, and C68700 be subjected to a stress-relieving thermal treatment subsequent to straightening. If required, this must be specified on the purchase order or contract. Tolerances for roundness and length, and the condition of straightness, for tube so ordered, shall be to meet the requirements agreed upon between by the manufacturer and the purchaser.

8. Mechanical Properties

8.1 Material specified to meet the requirements of the ASME Boiler and Pressure Vessel Code shall have tensile properties as prescribed in Table 2 or Table 3.

9. Grain Size for Annealed Tempers

- 9.1 Grain size shall be athe standard requirement for all product in the annealed (O61) temper.
- 9.1.1 Samples of annealed-temper tubes selected for test shall be subjected to microscopical examination per Test Methods E112 at a magnification of 75 diameters and shall show uniform and complete recrystallization.
- 9.1.1 Products other Other than of Copper Alloy UNS Nos. C19200 and C28000 shall have an No. C19200, acceptance or rejection for all annealed products shall depend only on average grain size of the test specimen within the limits of 0.010 to 0.045 mm. These requirements do not apply to tubes of light-drawn (H55), hard-drawn (H80), hard-drawn and end-annealed (HE80), or drawn and stress-relieved tempers (HR50).mm taken from each of two sample portions, and each specimen shall be within the limits prescribed herein when determined in accordance with Test Methods E112.

10. Expansion TestPerformance Requirements

- 10.1 Tube specimens selected for test shall withstand the expansion shown in Table 4 when expanded in accordance with Test Method B153. The expanded tube shall show no cracking or rupture visible to the unaided eye. Expansion Test:
- 10.1.1 Tube specimens selected for test shall withstand the expansion shown in Table 4 when expanded in accordance with Test Method B153. The expanded tube shall show no cracking or rupture visible to the unaided eye.
- 10.2 Hard-drawn tubes not end annealed are not subject to this test. When tubes are specified end annealed, this test is required and shall be performed on the annealed ends of the sampled tubes.
 - 10.3 Tubes for ferrule stock are not subject to the expansion test.

TABLE 2 Tensile Requirements—Inch-Pound Values

Note 1—See Table 3 for tensile requirements—SI values. STM B111/B111M-

	Temper Designation Standard- Code FormerName		804c_098.do366dc4	14/a stra- h 1.1 k - h	Elongation
Copper or Copper Alloy UNS No.			Tensile Strength, Odos min ksi ^A	Yield Strength, ^B min ksi ^A	in 2 in., min %
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H55	light-drawn	36	30	
C10100, C10200, C10300, C10800, C12000, C12200, C14200	H80	hard-drawn	45	40	
C19200	H55	light-drawn	40	35	
C19200	H80	hard-drawn	48	43	
C19200	O61	annealed	38	12	
C23000	O61	annealed	40	12	
C28000	O61	annealed	50	20	
C44300, C44400, C44500	O61	annealed	45	15	
C60800	O61	annealed	50	19	
C61300, C61400	O61	annealed	70	30	
C68700	O61	annealed	50	18	
C70400	O61	annealed	38	12	
C70400	H55	light-drawn	40	30	
C70600, C70620	O61	annealed	40	15	
C70600, C70620	H55	light-drawn	45	35	
C71000	O61	annealed	45	16	
C71500, C71520	O61	annealed	52	18	
C71500, C71520					
Wall thicknesses up to 0.048 in., incl	HR50	drawn and stress-relieved	72	50	12
Wall thicknesses over 0.048 in.	HR50	drawn and stress-relieved	72	50	15
C71640	O61	annealed	63	25	
C71640	HR50	drawn and stress relieved	81	58	
C72200	O61	annealed	45	16	
C72200	H55	light-drawn	50	45	

^A ksi = 1000 psi.

^B At 0.5 % extension under load.