

Designation: D6566 - 14 D6566 - 17

Standard Test Method for Measuring Mass per Unit Area of Turf Reinforcement Mats¹

This standard is issued under the fixed designation D6566; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope

- 1.1 This test method covers an index to the determination of mass per unit area of all turf reinforcement mats.
- 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.
- 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:²

D123 Terminology Relating to Textiles

D1776 Practice for Conditioning and Testing Textiles

D4354 Practice for Sampling of Geosynthetics and Rolled Erosion Control Products(RECPs) for Testing

D4439 Terminology for Geosynthetics

E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

2.2 ISO/DIS Document:

9864-1990 Mass per Unit Area of Geotextiles³

3. Terminology

- 3.1 For definitions of textile terms used in this test method, refer to Terminology D123.
- 3.2 For definitions of terms relating to geotextiles used in this test method, refer to Terminology D4439.

4. Summary of Test Method

4.1 The mass per unit area of a turf reinforcement mat is determined by weighing test specimens of known dimensions, cut from equally spaced distances over the full width of the laboratory sample. The calculated values are then averaged to obtain the mean mass per unit area of the laboratory sample.

5. Significance and Use

- 5.1 This test method is used to determine if the turf reinforcement mat meets specifications for mass per unit area. This test method can be used for quality control to determine specimen conformance. This measurement allows for a simple control of the delivered material by a comparison of the mass per unit area of the delivered material and the specified mass per unit area.
- 5.2 The procedure in this test method may be used for acceptance testing of commercial shipments, but caution is advised since information about between-laboratory precision is incomplete. Comparative tests in accordance with 5.2.1 are advisable.
- 5.2.1 In case of a dispute arising from differences in reported test results when using the procedures in this test method for acceptance testing of commercial shipments, the purchaser and the manufacturer should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias.

¹ This test method is under the jurisdiction of ASTM Committee D35 on Geosynthetics and is the direct responsibility of Subcommittee D35.05 on Geosynthetic Erosion Control.

Current edition approved May 1, 2014Jan. 1, 2017. Published June 2014January 2017. Originally approved in 2000. Last previous edition approved in $\frac{2012}{2014}$ as $\frac{2015}{2016}$ DoS: $\frac{10.1520}{10.1520}$

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and which are from a lot of material of the type in question. The test specimen should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using the appropriate student's student's t-test and an acceptable probability level chosen by the two parties before testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the manufacturer must agree to interpret future test results in light of the known bias.

6. Apparatus

6.1 Balance, calibrated, with an accuracy of 0.01 g.

7. Sampling

- 7.1 Lot Sample—Divide the test specimens into lots, and for the lot to be tested, take the lot sample<u>In the absence of other guidelines, divide the product into lots and take lot samples</u> in accordance with Practice D4354.
- 7.2 Laboratory Sample—Consider the units in the lot sample as the units in the laboratory sample. For the laboratory sample, take a <u>full width swatch full-width sample</u> of sufficient length <u>alongin</u> the <u>selvage machine direction</u> so that the <u>requirements required size and number</u> of <u>7.3 can be met.specimens can be obtained. Exclude the inner and outer layers or wraps of the roll or any material containing folds, crushed areas, or other distortions not representative of the sampled lot.</u>
 - 7.2.1 The laboratory sample should be free from imperfections or other areas not representative of the material sampled.
- 7.3 Remove test specimens from the laboratory sample so that each specimen will contain different machine and cross-machine elements with no specimen taken nearer than 100 mm [4 in.] from the roll sides or ends, unless otherwise specified.
- 7.4 The number of test specimens shall be a minimum of five, cut Cut specimens such that they are representative of the entire roll width and with a combined total minimum area of 230 000 mm² $-(356 \text{ [356 in.}^2) \cdot \text{]}$. Each test specimen shall be equal in area (not less than 23 000 mm² $-(35.6 \text{ [35.6 in.}^2) \cdot \text{]}$.) Cut each test specimen with an accuracy of $\pm 0.5\%$ of its area.

Note 1—For test specimens prepared in the field, larger than minimum-sized test specimens will be required to stay within the cutting accuracy (0.5 %). Field experience has shown that a test specimen with an area not less than 207 000 mm² (320.4 in.²) will be necessary to achieve the required accuracy.

- 7.4.1 Cut the test specimens at least one tenth the width of the turf reinforcement mat from any selvage, unless otherwise specified.
- 7.4.2 If the structure of the turf reinforcement mat is such that the specified test specimen size is not representative of the laboratory sample, a larger size shall be agreed upon between the purchaser and the supplier.
- 7.5 Number of Specimens—Unless otherwise agreed upon, as when provided in an applicable material specification, take the number of test specimens per laboratory sample as follows:
- 7.5.1 Reliable Estimate of v—When there is a reliable estimate of v based upon extensive part records for similar materials tested in the user's laboratory as directed in this test method, calculate the required number of specimens as follows so that the user may expect at the 95 % probability level that the test result is not more than 5.0 % of the average above or below the average of the sample:

$$n = (t \ v / A)^2 \tag{1}$$

where:

- n = number of test specimens (rounded upward to a whole number),
- \underline{v} = coefficient of variation of individual observations on similar materials in the user's laboratory under conditions of single operation precision, %,
- t = value of Student's t for one-sided limits, a 95 % probability level, and the degrees of freedom associated with the estimate of <math>v (see Table 1), and
- A = 5.0 % of the average, the value of the allowable variation.
- 7.5.2 No Reliable Estimate of v—When there is no reliable estimate of v for the user's laboratory, measurements shall be made on a minimum of five (5) specimens per laboratory sample.

8. Conditioning

- 8.1 Bring the specimens to moisture equilibrium in the atmosphere for testing turf reinforcement mats, that is a temperature of $21 \pm 2^{\circ}\text{C} 2^{\circ}\text{C}$ (70 $\pm 4^{\circ}\text{F}$)4 °F) and relative humidity of 60 \pm 10 %.
- 8.2 Moisture equilibrium is considered to have been reached when the increase in mass of the specimen in successive measurements made at intervals of not less than $2 \frac{h}{h}$ does not exceed ± 0.1 % of the mass of the specimen. In general, many turf reinforcement mats contain more moisture when received than they will after reaching moisture equilibrium. However, certain fibers may exhibit slow moisture equilibrium rates from the "as received" wet side. When this is known, a preconditioning cycle, a described in Practice D1776, may be agreed upon between contractual parties.