NORME INTERNATIONALE

ISO 3961

Troisième édition 1996-06-01

Corps gras d'origines animale et végétale — Détermination de l'indice d'iode

Animal and vegetable fats and oils — Determination of iodine value

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 3961:1996(F)

Avant-propos

L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux. L'ISO collabore étroitement avec la Commission électrotechnique internationale (CEI) en ce qui concerne la normalisation électrotechnique.

Les projets de Normes internationales adoptés par les comités techniques sont soumis aux comités membres pour vote. Leur publication comme Normes internationales requiert l'approbation de 75 % au moins des VIII Womités membres votants.

La Norme internationale ISO 3961 a été élaborée par le comité technique ISO/TC 34, Produits agricoles alimentaires, sous-comité SC 11, Corps gras d'origines animale et végétale.

https://standards.iteh.ai/catalog/standards/sist/40536c05-5f51-4b20-aea1-

Cette troisième édition annule et remplace 2 la 26 de dédition (ISO 3961:1989), dont elle constitue une révision technique.

Les annexes A et B de la présente Norme internationale sont données uniquement à titre d'information.

© ISO 1996

Droits de reproduction réservés. Sauf prescription différente, aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

Organisation internationale de normalisation Case postale 56 • CH-1211 Genève 20 • Suisse

Imprimé en Suisse

Corps gras d'origines animale et végétale — Détermination de l'indice d'iode

1 Domaine d'application

La présente Norme internationale prescrit une méthode pour la détermination de l'indice d'iode des huiles et corps gras d'origines animale et végétale, désignés sous le terme de corps gras TANDAR

4 Principe

Dissolution d'une prise d'essai dans un solvant et addition de réactif de Wijs. Après un temps donné, addition d'une solution d'iodure de potassium et d'eau, et titrage de l'iode libéré par une solution de thiosulfate de sodium.

(standards.iteh.ai)

2 Références normatives

Les normes suivantes contiennent des dispositions Réactifs qui, par suite de la référence qui en est faite, constiant tuent des dispositions valables pour dad2presente/iso-39 Norme internationale. Au moment de la publication, les éditions indiquées étaient en vigueur. Toute norme est sujette à révision et les parties prenantes des accords fondés sur la présente Norme internationale sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des normes indiquées ciaprès. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur à un moment donné.

ISO 661:1989, Corps gras d'origines animale et végétale — Préparation de l'échantillon pour essai.

ISO 3696:1987, Eau pour laboratoire à usage analytique — Spécification et méthodes d'essai.

3 Définitions

Pour les besoins de la présente Norme internationale, la définition suivante s'applique.

3.1 indice d'iode: Masse d'halogène, exprimée en iode, absorbée par la prise d'essai dans les conditions opératoires prescrites, divisée par la masse de la prise d'essai.

L'indice d'iode est exprimé en grammes pour 100 g de corps gras.

s/sist/40536c05-5f51-4b20-aea1-

Autiliser uniquement des réactifs de qualité analytique reconnue, et de l'eau de qualité 3, conformément à l'ISO 3696.

5.1 lodure de potassium (KI), solution à 100 g/l, exempte d'iode libre et d'iodate.

5.2 Empois d'amidon, solution.

Mélanger 5 g d'amidon soluble avec 30 ml d'eau, ajouter ce mélange à 1 000 ml d'eau bouillante. Laisser bouillir pendant 3 min, puis laisser refroidir.

- 5.3 Thiosulfate de sodium, solution titrée. c(Na₂S₂O₃,5H₂O) = 0,1 mol/l, titrée dans les 7 joursprécédant l'emploi.
- 5.4 Solvant, préparé en mélangeant des volumes égaux de cyclohexane et d'acide acétique cristallisable.
- 5.5 Réactif de Wijs, contenant du monochlorure d'iode dans de l'acide acétique.

Le rapport I/Cl du réactif de Wijs doit se situer dans les limites de $1,10 \pm 0,1$.

NOTE 1 Un réactif de Wijs du commerce peut être utilisé.

6 Appareillage

Matériel courant de laboratoire et, en particulier, ce aui suit.

- 6.1 Nacelles en verre, appropriées à la prise d'essai et pouvant être placées dans les fioles (6.2).
- **6.2** Fioles coniques, de 500 ml de capacité, munies de bouchons rodés en verre et étant parfaitement sèches.
- **6.3** Balance analytique, précise à \pm 0,001 g.

7 Échantillonnage

Il est important que le laboratoire recoive un échantillon réellement représentatif, non endommagé ou modifié lors du transport et de l'entreposage.

L'échantillonnage ne fait pas partie de la méthode prescrite dans la présente Norme internationale. Une méthode d'échantillonnage recommandée est donnée dans I'ISO 5555. iTeh STANDA

9.2 Détermination

9.2.1 Placer la nacelle en verre contenant la prise d'essai dans la fiole conique de 500 ml (6.2) et ajouter le volume de solvant (5.4) indiqué dans le tableau 1. À l'aide d'une pipette, ajouter 25 ml de réactif de Wijs (5.5). Boucher la fiole, la remuer en tournant pour homogénéiser son contenu et la placer dans l'obscurité.

AVERTISSEMENT — Ne pas pipetter le réactif de Wijs à la bouche.

- 9.2.2 Préparer un blanc avec le solvant et le réactif de la même façon qu'en 9.2.1, mais sans la prise d'essai.
- 9.2.3 Pour les échantillons ayant un indice d'iode inférieur à 150, laisser les fioles dans l'obscurité pendant 1 h.

Pour les échantillons ayant un indice d'iode supérieur à 150, et pour les produits polymérisés et les huiles contenant des acides gras à doubles liaisons conjuguées (telles que l'huile de bois, l'huile de ricin déshydratée) et toutes les huiles contenant des acides gras cétoniques (telles que certaines huiles de ricin hydro-8 Préparation de l'échantillon pour essain dan génées let les produits considérablement oxydés, laisser les fioles dans l'obscurité pendant 2 h.

Préparer l'échantillon pour essai conformément à l'ISO 661.

ISO 39 **9.2.4** Après ce temps de réaction (9.2.3), ajouter https://standards.iteh.ai/catalog/standa20/mit/de lac solution do localized de potassium (5.1) et 65d2212b283a/1503mildieau dans la fiole.

9 Mode opératoire

NOTE 2 S'il y a lieu de vérifier si l'exigence de répétabilité est satisfaite (voir 11.1), effectuer deux déterminations séparées dans les conditions de répétabilité.

9.1 Prise d'essai et préparation de la solution à blanc

9.1.1 Selon l'indice d'iode présumé de l'échantillon, peser, à 0,001 g près, dans la nacelle en verre (6.1), la masse de la prise d'essai indiquée dans le tableau 1.

Tableau 1 — Masse de la prise d'essai

Indice d'iode présumé	Masse de la prise d'essai	Volume de solvant
g/100 g	g	ml
Jusqu'à 1,5 1,5 à 2,5 2,5 à 5 5 à 20 20 à 50 50 à 100 100 à 150 150 à 200	15,00 10,00 3,00 1,00 0,40 0,20 0,13 0,10	25 25 20 20 20 20 20 20 20

NOTE - La masse de l'échantillon doit être telle qu'il y ait un excès du réactif de Wijs d'environ 50 % à 60 % de la quantité ajoutée; c'est-à-dire de 100 % à 150 % de la quantité absorbée.

Titrer avec la solution filtrée de thiosulfate de sodium (5.3) jusqu'à ce que la couleur jaune due à l'iode ait presque disparu. Ajouter quelques gouttes de la solution d'empois d'amidon (5.2) et poursuivre le titrage jusqu'au moment où la couleur bleue disparaît après avoir agité très vigoureusement. Il est possible d'effectuer un titrage potentiométrique au virage de la solution.

9.2.5 Effectuer la détermination en utilisant la solution à blanc (9.2.2) dans le même temps.

10 Calcul

L'indice d'iode, w_I, exprimé en grammes pour 100 g de corps gras, est donné par l'équation:

$$w_{\rm I} = \frac{12,69 \ c \ (V_1 - V_2)}{m}$$

οù

- est la concentration, en moles par litre, de la solution de thiosulfate de sodium (5.8);
- V_1 est le volume, en millilitres, de la solution de thiosulfate de sodium utilisé pour l'essai à blanc;

- est le volume, en millilitres, de la solution V_2 de thiosulfate de sodium utilisé pour la détermination:
- est la masse, en grammes, de la prise m d'essai.

Arrondir les résultats comme indiqué dans le tableau 2.

Tableau 2 — Arrondissement des résultats

Valeurs en grammes pour 100 g

w_{I}	Arrondissement à
Jusqu'à 20	0,1
20 à 60	0,5
Plus de 60	1

11.2 Reproductibilité

La différence absolue entre deux résultats d'essai individuels, obtenus à l'aide de la même méthode sur un matériau identique soumis à l'essai dans des laboratoires différents par des opérateurs différents utilisant des appareillages différents, ne doit pas être supérieure à la valeur de R figurant dans le tableau 3.

Tableau 3 — Limites de répétabilité et de reproductibilité

⊮ _I g/100 g	r	R
Jusqu'à 20	0,2	0,7
20 à 50	1,3	3,0
50 à 100	2,0	3,0
100 à 135	3,5	5,0

12 Rapport d'essai

Le rapport d'essai doit indiquer

la méthode selon laquelle l'échantillonnage a été effectué, si elle est connue;

le(s) résultat(s) d'essai obtenu(s), et

ISO 3961:1996— si la répétabilité a été vérifiée, le résultat final cité $https://standards.iteh.ai/catalog/standards/sist/4053 \ref{a0} \ref{a0$

65d2212b283a/iso-3961-1996

11 Fidélité

Les détails des essai interlaboratoires relatifs à la fidélité de la méthode sont résumés dans l'annexe A. Les valeurs provenant de l'essai interlaboratoire ne suite la méthode utilisée; peuvent être appliquées aux plages de concentration et aux matrices autres que celles données.

11.1 Répétabilité

La différence absolue entre deux résultats individuels indépendants, obtenus à l'aide de la même méthode sur un matériau d'essai identique soumis à l'essai dans le même laboratoire et par le même opérateur utilisant le même appareillage et dans un court intervalle de temps, ne doit pas être supérieure à la valeur de r figurant dans le tableau 3.

Il doit, en outre, mentionner tous les détails opératoires non prévus dans la présente Norme internationale, ou facultatifs (par exemple le temps de réaction, voir 9.2.3), ainsi que les incidents éventuels susceptibles d'avoir agi sur le(s) résultat(s) d'essai.

Le rapport d'essai doit donner tous les renseignements nécessaires à l'identification complète de l'échantillon.

ISO 3961:1996(F) © ISO

Annexe A

(informative)

Essai interlaboratoire

Un essai interlaboratoire organisé entre 1988 et 1990 sur le plan international par la Commission des huiles. corps gras et cires de l'Union internationale de chimie pure et appliquée (IUPAC) a donné les résultats statistiques, évalués selon l'ISO 5725, figurant dans le tableau A.1.

Le tableau A.2 donne la détermination movenne estimée pour chaque laboratoire, pour chacune des deux méthodes analytiques (celle donnée dans la précédente édition de la présente Norme internationale et la présente méthode), et corrigée pour le déséquilibre du modèle dans les échantillons analysés. Ces moyennes sont dérivées de l'intégralité de la base de données, obtenue par analyse de la moyenne des déterminations A et B (voir le tableau A.3). Le tableau A.2 donne également la différence moyenne dérivée entre les résultats obtenus par les deux méthodes ainsi que la différence d'ensemble groupée et son écart-type. Les valeurs moyennes de labora-

toire étaient presque similaires et le bon accord entre laboratoires pour les deux méthodes est encore démontré par les écarts-types interlaboratoires donnés dans le tableau A.3. Ceux-ci sont seulement un peu plus grands que l'écart-type interlaboratoire avec un coefficient de variation de 1,2 % pour l'ancienne méthode et de 1,3 % pour la nouvelle méthode avec cyclohexane et acide acétique. Il n'y a pas de biais compatible d'une méthode à l'autre, d'un laboratoire à un autre, et la différence moyenne (tableau A.2) n'est pas significativement différente de zéro.

Les résultats de l'essai interlaboratoire sur l'huile de poisson confirment ceux de l'étude interlaboratoire par les deux mêmes méthodes appliquées à une gamme de corps gras d'origines animale et végétale, incluant un échantillon d'huile de poisson d'indice d'iode faible (tableau A.1) en montrant que le mélange cyclohexane/acide acétique peut être utilisé à la place du tétrachlorure de carbone sans perte de fidélité. standards.iteh.ai)

Tableau A.1 — Résultats de l'essai interlaboratoire

https://standards.iteh.ai/ca Échantillon 65d	_	t0 indice d′iode b _{1−199} moyen g/100 g	20-aea1- r	R
Huile de palmiste Graisse de bœuf Huile de palme non raffinée Huile de palme raffinée Huile de poisson solidifiée Huile de soja solidifiée Huile de soja solidifiée Huile de graines de tournesol	8 10 9 10 17 17 17	18,3 46,9 52,6 53,2 72,8 74,8 102,3 132,9	0,14 1,33 1,6 0,82 1,6 1,5 2,2 3,6	0,64 3,1 2,3 1,9 2,3 2,1 5,1 4,8

Tableau A.2 — Movennes des déterminations d'indice d'iode

Valeurs en grammes pour 100 g

	Méthode o		
Laboratoire	ISO 3961:1989 utilisant du tétrachlorure de carbone	ISO 3961:1996 utilisant le mélange cyclohexane/acide acétique (1/1)	Différence des moyennes
1	155,43	154,22	1,21
3	156,02	155,74	0,28
5	154,59	154,87	- 0,28
6	154,64	155,61	- 0,97
7	154,00	154,29	- 0,29
8	154,70	153,56	1,15
10	154,88	156,86	- 1,98
Globalement:		-	-0,13 à +0,16

© ISO ISO ISO ISO 3961:1996(F)

Tableau A.3 — Résumé de trois estimations d'«erreurs»

Valeurs en grammes pour 100 g

		Méthode donnée dans	
		ISO 3961:1989 utilisant du tétrachlorure de carbone	ISO 3961:1996 utilisant le mélange cyclohexane/acide acétique (1/1)
Moyennes des déterminations d'iode	d'indice	154,9	155,0
Écart-type (pourcentage de val- moyenne) estimé pour:	eur		
les répétitions ouvertes		1,08 (0,70)	0,66 (0,43)
les répétitions cachées	A1)	1,71 (1,10)	1,55 (1,00)
	B1)	1,01 (0,65)	1,29 (0,83)
entre laboratoires	Α	1,81 (1,17)	1,98 (1,28)
	В	1,43 (0,92)	1,79 (1,15)

¹⁾ Comparaison entre les résultats des répétitions cachées dans la première analyse des échantillons (A) et des répétitions cachées dans la seconde analyse des mêmes échantillons (B).

iTeh STANDARD PREVIEW (standards.iteh.ai)

Annexe B (informative)

Bibliographie

- [1] ISO 5555:1991, Corps gras d'origines animale et végétale Échantillonnage.
- [2] L'ISO 5725:1986, Fidélité des méthodes d'essai Détermination de la répétabilité et de la reproductibilité par essais interlaboratoires (annulée à l'heure actuelle), a été utilisée pour l'obtention des données de fidélité.

iTeh STANDARD PREVIEW (standards.iteh.ai)

Page blanche

iTeh STANDARD PREVIEW (standards.iteh.ai)