International Standard

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION•МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ•ORGANISATION INTERNATIONALE DE NORMALISATION

Hexagon head bolts — Product grade C

Boulons à tête hexagonale -- Classe de produit C

First edition — 1979-06-15

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4016:1979 https://standards.iteh.ai/catalog/standards/sist/3dcfa9c8-8317-459a-9791-101c317fdbe7/iso-4016-1979

UDC 621.882.6

Ref. No. ISO 4016-1979 (E)

ISO 4016-1979 (E)

Descriptors: fasteners, bolts, hexagonal head bolts, specifications, dimensions, dimensional tolerances, designation.

FOREWORD

ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council.

International Standard ISO 4016 was developed by Technical Committee ISO/TG 2, Fasteners, and was circulated to the member bodies in December 1977.

It has been approved by the member bodies of the following countries iteh.ai)

Australia India IRomania 979
Relatium Hrelandondordo itali ol/opto lo South Africa

Belgium http://datalogSouth.Africa/Bep.90f-8317-459a-9791-

Canada Israel 101c317Spain/iso-4016-1979 Chile Italy Sweden

Czechoslovakia Korea, Rep. of Switzerland Denmark Mexico Turkey

Egypt, Arab Rep. of Netherlands United Kingdom Finland New Zealand USA

Germany, F.R. Norway Yugoslavia
Hungary Poland

The member bodies of the following countries expressed disapproval of the document on technical grounds:

France USSR

Hexagon head bolts — Product grade C

iTeh STANDARD PREVIEW (standards.iteh.ai)

0 INTRODUCTION

This International Standard is part of the complete ISO 979
product standards series por hexagon drive fasteners d The sist/3 df fain special cases, specifications other than those listed in series comprises:

101c317fdbe7/iso-4016-this International Standard are required, it is recommended

- a) Hexagon head bolts (ISO 4014, ISO 4015 and ISO 4016)
- b) Hexagon head screws (ISO 4017 and ISO 4018)
- c) Hexagon nuts (ISO 4032, ISO 4033, ISO 4034, ISO 4035 and ISO 4036)
- d) Hexagon flanged bolts
- e) Hexagon flanged screws
- f) Hexagon flanged nuts
- g) Structural bolting

190 261 190

(In preparation)

ISO 261, ISO general purpose metric screw threads — General plan.

No finish is required for this product except for the thread. A small die seam across the bearing surface is permissible.

that they should be selected from existing International

Standards, for example ISO 261, ISO 888, ISO 898,

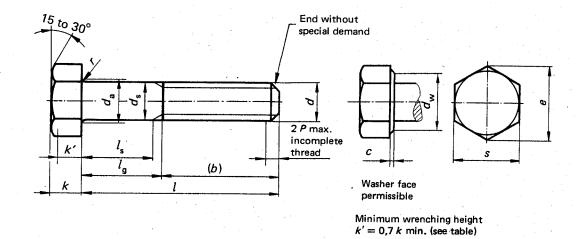
ISO 888, Bolts, screws and studs — Nominal lengths, and thread lengths for general purpose bolts.

ISO 898, Mechanical properties of fasteners.

ISO 965, ISO 1461, ISO 4759/1.

2 REFERENCES

ISO 965, ISO general purpose metric screw threads — Tolerances.


ISO 1461, Metallic coatings — Hot dip galvanized coatings on fabricated ferrous products — Requirements.

ISO 4759/1, Tolerances for fasteners — Part 1 : Bolts, screws and nuts with thread diameters \geq 1,6 \leq 150 mm and product grades A, B and C.

1 SCOPE AND FIELD OF APPLICATION

This International Standard gives specifications for hexagon head bolts with metric dimensions and thread diameters from 5 up to and including 36 mm, of product grade C.

3 DIMENSIONS

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4016:1979 https://standards.iteh.ai/catalog/standards/sist/3dcfa9c8-8317-459a-9791-101c317fdbe7/iso-4016-1979

Thread size d		M5 M6		16	M8		M10		M12		(M14)		M16				
Р		1)	0.	0,8 1		1,25		1,5		1,75		2		2			
		2)	16		18		22		26		30		34		38		
<i>b</i> re	f.	3)				_		28		32		36		40		44	
		4)			_		_				-		-		57		
С			0,	5	0,		0,6		0,6		0,6		0,6		8,0		
d _a			6		7,		10,2		12,2		14,7		16,7		18,7		
d _s max.			48		48 	8,58		10,58		12,7		14,7		16,7			
	111111.			52		5,52		7,42		9,42		11,3		13,3		15,3	
d _w		min.	6,		8,7		11,4		14,4		16,4		19,2		22		
е		min.	4			10,89		20	17,59		19,85		+	22,78		26,17	
<i>L</i>	-	nom.	3,		4	60	5,			,4		,5 or	+	<u>,8</u>	10	***	
k	-	min.		12	 	62	4,			,95 ,85		,05		,35		,25	
k'		max. min.	2,	88 2	4,38		5,6	98 45		,85 ,2		,95 ,95		,25 ,85		,75 5	
$\frac{1}{r}$		min.			2,5 0,25		0,4				 		 	·	6,5 0,6		
<u> </u>		max.	0,2		10		13		0,4 16		0,6		21	0,6		24	
s	_	min.			9,64		12,57		15,57		17,57			20,16		23,16	
	7														<u></u>		
	l	1	$l_{\rm s}$	l_{g}	$l_{\rm s}$	l_{g}	l_{s}	l_{g}	l _s	l_{g}		l_{g}	$l_{\rm s}$	l_g	l_{s}	l_{g}	
nom.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	
25	23,95	26,05	5	9									·				
30	28,95	31,05	10	en S	17A	12	AKI	J P	KE!		W						
35	33,75	36,25	15	19	12	17	6,75	13				<u> </u>			For the	ese sizes	
40	38,75	41,25	20	24	3174	1222	11,75	11811	6,5	14					see IS	O 4018	
45	43,75	46,25	25	29	22	27	16,75	23	11,5	19	6,25	15		ļ		 	
50	48,75	51,25	30	34	27	3 <u>2</u> SO	420175519	798	16,5	24	11,25	20	6	16	L	ļ	
55	53,5	56,5	https://st	ındards.	tel??ai/ca	tal3g/sta	126,75	ist ³³ dcf	1928583	17 29 59	16725	25	11	21	7	17	
60	58,5	61,5	ļ		37 ₁₀₁	c3 42 /fdl	<u>31/35</u> _2	0138-19	796,5	34	21,25	30	16	26	12	22	
65	63,5	66,5					36,75	43	31,5	39	26,25	35	21	31	17	27	
70 80	68,5	71,5	ļ. —				41,75	48 58	36,5	44 54	31,25	50	26 36	36 46	22 32	32 42	
90	78,5 88,25	81,5 91,75	 				51,75	36	46,5 56,5	54 64	41,25 51,25	60	46	56	42	52	
100	98,25	101,75	 						66,5	74	61,25	70	56	66	52	62	
110	108,25	111,75							00,0	, ,	71,25	80	66	76	62	72	
120	118,25	121,75	 	-							81,25	90	76	86	72	82	
130	128	132									,		80	90	76	86	
140	138	142											90	100	86	96	
150	148	152													96	106	
160	156	164													106	116	
180	176	184															
200	195,4	204,6															
220	215,4	224,6															
240	235,4	244,6	 													·	
260	254,8	265,2	 													<u> </u>	
280	274,8	285,2														ļ	
300	294,8	305,2						ı i			ı İ	l i	[]			i	

The popular lengths are between the stepped lines. The size M14 should be avoided if possible.

¹⁾ P = pitch of the thread

²⁾ For nominal lengths ≤ 125 mm

³⁾ For nominal lengths > 125 and ≤ 200 mm

⁴⁾ For nominal lengths > 200 mm

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4016:1979 https://standards.iteh.ai/catalog/standards/sist/3dcfa9c8-8317-459a-9791-101c317fdbe7/iso-4016-1979

Dimens	ions in	millir	netres

M36

M30

3,5

۵,5	1	,75	2		2	!	2	,5		3	3	,5	4		
5	30		34		38		46		5	54		66		78	
2	36		40		44		52		60		72		84		
		-	_		57	•	65		7	3	85		97		
),6	0	,6	0	,6	0,8		0,8		0,8		0,8		0,8		
2,2	14	,7	16	,7	18,7		24,4		28,4		35,4		42,4		
),58	12	,7	14,	,7	16,7		20	20,84		24,84		30,84		37	
,42	11	,3	13,	,3	15	,3	19,16		2	23,16		29,16		35	
1,4	16	,4	19,2		22		27,7		33,2		42,7		51,1		
7,59	19	,85	22,78		26,17		32,95		39,55		50,85		60,79		
5,4	- 7,	,5	8,8		10		12,5		15		18,7		22,5		
i,95	7,	,05	8,	.35	9	,25	11	,6	14	4,1	17,	,65	21	,45	
,85	7.	,95	9,	.25	10	,75	13	,4	1!	5,9	19,	,75	23	,55	
,2	4,95		5,85		6,5		8,1		9,9		12,4		15,0		
),4	0,	,6	0,	6	0	,6	0	,8		3,8	1		1		
•	18		21		24		30		30	3	46		55		
,57	17,	,57	20,	16	23	,16	29	,16	3!	5	45		53	,8	
	shank le	ngth $l_{ m s}$ ar	nd grip le	ngth l_q								_			
l_{g}	l_{s}	l_{g}	l_{s}	l_{g}	l _s	l_{g}	l_{s}	l_{g}	l _s	l_{g}	l_s	l_{g}	l_{s}	$l_{\rm g}$	
max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	
	ļ		·			ļ				<u> </u>					
ļ	ļ								i					ļ	
ļ	<u></u>				For the	se sizes	IA	ND	$\mathbf{A}\mathbf{R}$	D P	KE.	$(H \cup A)$	V		
14	<u> </u>				see IS0	0 4018			-		•		<u> </u>		
19	6,25	15					stai	ndai	ras.	iten	.a1)				
24	11,25	20	6	16											
29	16,25	25	11	21	7	17		ISO	4016:1	979					
34	21,25	30	16	26	1.2 tps://sta	ndards i	eh ai/ea	la la a/sta	ndards	sist/3defe	008-83	7-4599	9791		
39	26,25	35	21	31	17	27	6,5	3179db	e7/iso	4016-19	79		- 1		
44	31,25	40	26	36	22	32	11,5	24		01017					
54	41,25	50	36	46	32	42	21,5	34	111	26					
64	51,25	60	46	56	42	52	31,5	44	21	36	6,5	24			
74	61,25	70	56	66	52	62	41,5	54	31	46	16,5	34			
	71,25	80	66	76	62	72	51,5	64	41	56	26,5	44	12	32	
	81,25	90	76	86	72	82	61,5	74	51	66	36,5	54.	22	42	
			80	90	76	86	65,5	78	55	70	40,5	58	26	46	
			90	100	86	96	75,5	88	65	80	50,5	68	36	56	
					96	106	85,5	98	75	90	60,5	78	46	66	
 	ļ				106	116	95,5	108	85	100	70,5	88	56	76	
							115,5	128	105	120	90,5	108	76	96	
ļ							135,5	148	125	140	110,5	128	96	116	
									132	147	117,5	135	103	123	
ļ									152	167	137,5	155	123	143	
											157,5	175	143	163	
										$oxed{oxed}$	177,5	195	163	183	
	<u> </u>								1		197,5	215	183	203	
				,					1						

110

1,5

M12

1,75

(M14)

2

M16

2

M20

2,5

M24

3

Formulae :

 $l_{\mathbf{g}}$ max. = l nom. – b ref. $l_{\rm s}$ min. = $l_{\rm g}$ max. -5P

iTeh STANDARD PREVIEW (standards.iteh.ai)

ISO 4016:1979 https://standards.iteh.ai/catalog/standards/sist/3dcfa9c8-8317-459a-9791-101c317fdbe7/iso-4016-1979

ANNEX

This annex is included for explanatory and informative purposes only and is not to be considered as part of this International Standard.

This International Standard incorporates some changes, primarily in width across flats, from the previous metric practice in a number of countries. These changes were made to achieve international agreement and to improve product design and utilization of material.

At its meeting in May 1977, ISO/TC 2 studied several technical reports analysing design considerations influencing determination of the best series of widths across flats for hexagon bolts, screws and nuts. A primary technical objective was to achieve a logical ratio between underhead bearing surface area (which determines the magnitude of the compressive stress on the bolted members) and the

tensile stress area of the screw thread (which governs the clamping force which can be developed by tightening the fastener). \dagger

Table 1 lists the ratios for the sizes selected by ISO/TC 2 to be ISO standard (bold type) and in addition four sizes (light type) which currently are being produced and used in substantial quantities in many countries of the world.

The four sizes (widths across flats of 15, 17, 19 and 22 mm) will be phased out of production and use. During a transitional period, to assist designers and manufacturers, and in particular to give needed information for maintenance and repair requirements, the dimensions of the four sizes are given in table 2.

TABLE 1

Nominal	Mildely account float	Annular bearing area			
thread diameter	Width across flats	Thread stress area			
mm	mm .	TAL OTAN			
5	8	11 e _{1,08} 5 1 A1			
6	10	1,44 (stan			
8	13	1,23			
	15	0,90			
10	16	https://standards.iteh.ai/catalog 1,30 101c31			
	17	1,73			
10	18	0,91			
12	19	1,16			
14 :	21	0,96			
14	22	1,24			
16	24	1,02			
20	30	0,95			
24	36	0,86			
30	46	1,02			
36	55	1,04			

Calculation based on clearance holes ISO 273 (revised), medium series.

TABLE 2

Thread size	e d	M1	10	M12	M14	
P	<i>P</i> 1)		5	1,75	2	
DDI	DD 12 /1/	26	-	30	34	
bref.	3)	32		36	40	
rds.ite	h.max.)	0,	6	0,6	0,6	
d _a	max.	12,	2	14,7	16,7	
0 <u>4016:1979</u> andards/sist/3c	min.	13.4 /502.07	15,4	17,4	20,1	
pe7/iso-4016-	197 g max.	10,	58	12,7	14,7	
u _s	min.	9,	42	11,3	13,3	
е	min.	16,64 18,72		20,88	23,91	
	nom.	6,	4	7,5	8,8	
k	min.	5,	95	7,05	8,35	
	max.	6,	85	7,95	9,25	
k'	min.	4,	2	4,95	5,85	
r	r min.		4	0,6	0,6	
	max.	15	17	19	22	
S	min.	14,57	16,57	18,48	21,16	

- 1) P = pitch of the thread
- 2) For nominal lengths ≤ 125 mm
- 3) For nominal length > 125 mm and ≤ 200 mm

[†] The calculation technique is presented in TC 2/WG 4 N 43 and the ratios computed for all of the various width across flats/product size combinations examined by ISO/TC 2 are given in document TC 2 N 699.