Standard Specification for Rope-Lay-Stranded Copper Conductors Having BunchStranded Members, for Electrical Conductors ${ }^{1}$

This standard is issued under the fixed designation B172; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope

1.1 This specification covers bare rope-lay-stranded conductors having bunch-stranded members made from round copper wires, either uncoated or coated with tin, lead, or lead-alloy for use as electrical conductors (Explanatory Notes 1 and 2).
1.2 Coated wires shall include only those wires with finished diameters and densities substantially equal to the respective diameters and densities of uncoated wires.
1.3 The values stated in inch-pound or SI units are to be regarded separately as standard. Each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. For conductor sizes designated by AWG or kcmil, the requirements in SI units have been numerically converted from corresponding values, stated or derived, in inch-pound units. For conductor sizes designated by SI units only, the requirements are stated or derived in SI units.
1.3.1 For density, resistivity, and temperature, the values stated in SI units are to be regarded as standard.
1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 The following documents of the issue in effect at the time of reference form a part of this specification to the extent referenced herein:

2.2 ASTM Standards: ${ }^{2}$
B3 Specification for Soft or Annealed Copper Wire
B33 Specification for Tin-Coated Soft or Annealed Copper Wire for Electrical Purposes
B173 Specification for Rope-Lay-Stranded Copper Conductors Having Concentric-Stranded Members, for Electrical Conductors
B189 Specification for Lead-Coated and Lead-Alloy-Coated Soft Copper Wire for Electrical Purposes
B193 Test Method for Resistivity of Electrical Conductor Materials
B263 Test Method for Determination of Cross-Sectional Area of Stranded Conductors
B354 Terminology Relating to Uninsulated Metallic Electrical Conductors
2.3 American National Standard:
ANSI C42.35 Definitions of Electrical Terms ${ }^{3}$

3. Classification

3.1 For the purpose of this specification rope-lay-stranded conductors having bunch-stranded members are elassifedclassified as follows:

[^0]3.1.1 Class I-Conductors consisting of wires $0.0201-\mathrm{in}$. ($0.511-\mathrm{mm}$) diameter (No. 24 AWG) to produce rope-lay-stranded conductors up to $2000000 \mathrm{cmil}\left(1013 \mathrm{~mm}^{2}\right)$ in total cross-sectional area. (Typical use is for special apparatus conductor.)
3.1.2 Class K-Conductors consisting of wires $0.0100-\mathrm{in}$. ($0.254-\mathrm{mm}$) diameter (No. 30 AWG) to produce rope-lay-stranded conductors up to $1000000 \mathrm{cmil}\left(507 \mathrm{~mm}^{2}\right)$ in total cross-sectional area. (Typical use is for special portable cord and conductors.)
3.1.3 Class M-Conductors consisting of wires $0.0063-\mathrm{in}$. ($0.160-\mathrm{mm}$) diameter (No. 34 AWG) to produce rope-lay-stranded conductors up to $1000000 \mathrm{cmil}\left(507 \mathrm{~mm}^{2}\right)$ in total cross-sectional area. (Typical use is for welding conductors.)

4. Ordering Information

4.1 Orders for material under this specification shall include the following information:
4.1.1 Quantity of each size and class,
4.1.2 Conductor size: circular-mil area or AWG (see 7.1),
4.1.3 Class (Section 4 and Tables 1-3),
4.1.4 Whether coated or uncoated; if coated, designate type of coating (see 11.1),

TABLE 1 Construction Requirements of Class I Rope-Lay Stranded Copper Conductors Having Bunch Stranded Members ${ }^{A}$

Area of Cross Section		$\begin{aligned} & \text { Size } \\ & \text { AWG } \end{aligned}$	Wire Diameter 0.0201 in. $(0.511$ $\mathrm{mm})$ Nominal Number of Wires	Strand Construction A by B by C^{C}	Approximate		Uncoated Copper				Coated Copper				
		Nominal dc resistance @ $20^{\circ} \mathrm{C}$					Maximum dc resistance @ $20^{\circ} \mathrm{C}$		Nominal dc resistance @ $20^{\circ} \mathrm{C}$		Maximum dc resistance @ $20^{\circ} \mathrm{C}$				
cmil	mm^{2}				$\begin{gathered} \hline \mathrm{lb} / \\ 1000 \mathrm{ft} . \end{gathered}$	$\begin{aligned} & \mathrm{kg} / \\ & \mathrm{km} \end{aligned}$	Ohm / kft	Ohm / km	Ohm / kft	$\begin{gathered} \text { Ohm / } \\ \text { km } \end{gathered}$	Ohm / kft	Ohm / km	Ohm / kft	$\begin{gathered} \text { Ohm / } \\ \text { km } \end{gathered}$	
2000000	1013		\ldots	4921	19 by 7 by 37	6439	9583	0.00555	0.0182	0.00566	0.0186	0.00577	0.0189	0.00589	0.0193
1900000	963		4788	19 by 7 by 36	6265	9324	0.00584	0.0192	0.00596	0.0196	0.00607	0.0199	0.00619	0.0203	
1800000	912		4522	19 by 7 by 34	5917	8806	0.00616	0.0202	0.00628	0.0206	0.00641	0.0210	0.00654	0.0214	
1750000	887		4389	19 by 7 by 33	5743	8547	0.00634	0.0208	0.00647	0.0212	0.00659	0.0216	0.00672	0.0220	
1700000	861		4256	19 by 7 by 32	5569	8288	0.00653	0.0214	0.00666	0.0218	0.00679	0.0223	0.00693	0.0227	
1600000	811		3990	19 by 7 by 30	5221	7770	0.00694	0.0228	0.00708	0.0233	0.00721	0.0237	0.00735	0.0242	
1500000	760		3724	19 by 7 by 28	4873	7252	0.00740	0.0243	0.00755	0.0248	0.00769	0.0252	0.00784	0.0257	
1400000	709		3458	19 by 7 by 26	4525	6734	0.00793	0.0260	0.00809	0.0265	0.00824	0.0270	0.00840	0.0275	
1300000	659		3192	19 by 7 by 24	4177	6216	0.00854	0.0280	0.00871	0.0286	0.00888	0.0291	0.00906	0.0297	
1250000	633		3059	19 by 7 by 23	4003	5957	0.00888	0.0291	0.00906	0.0297	0.00923	0.0303	0.00941	0.0309	
1200000	608		2926	19 by 7 by 22	3829	5698	0.00925	0.0303	0.00944	0.0309	0.00962	0.0316	0.00981	0.0322	
1100000	557		2793	19 by 7 by 21	3655	5439	0.0101	0.0331	0.0103	0.0338	0.0105	0.0344	0.0107	0.0351	
1000000	507		2527	19 by 7 by 19	3307	4921	0.0111	0.0364	0.0113	0.0371	0.0115	0.0379	0.0117	0.0387	
900000	456		2261	19 by 7 by 17	2959	4403	0.0123	0.0405	0.0125	0.0413	0.0128	0.0421	0.0131	0.0429	
800000	405		1995	19 by 7 by 15	2611	3885	0.0139	0.0455	0.0142	0.0464	0.0144	0.0473	0.0147	0.0482	
750000	380		1862	19 by 7 by 14	2436	3626	0.0148	0.0485	0.0151	0.0495	0.0154	0.0505	0.0157	0.0515	
700000	355		1729	19 by 7 by 13	2262	3367	0.0159	0.0520	0.0162	0.0530	0.0165	0.0541	0.0168	0.0552	
650000	329		1596	19 by 7 by 12	2088	3108	0.0171	0.0560	0.0174	0.0571	0.0178	0.0583	0.0182	0.0594	
600000	304	. . .	1470	7 by 7 by 30	1906	2836	0.0183	0.0601	0.0187	0.0613	0.0191	0.0625	0.0195	0.0638	
550000	279		1372	7 by 7 by 28	1779	2647	0.0200	0.0656	0.0204	0.0669	0.0208	0.0682	0.0212	0.0696	
500000	253		1225	7 by 7 by 25	1588	2363	0.0220	0.0721	0.0224	0.0735	0.0229	0.0750	0.0234	0.0765	
450000	228		1127	7 by 7 by 23	1461	2174	0.0244	0.0802	0.0249	0.0817	0.0254	0.0834	0.0259	0.0850	
400000	203		980	7 by 7 by 20	1270	1891	0.0275	0.0902	0.0281	0.0920	0.0286	0.0938	0.0292	0.0957	
350000	177		882	7 by 7 by 18	1143	1701	0.0314	0.103	0.0320	0.105	0.0327	0.107	0.0334	0.109	
300000	152		735	7 by 7 by 15	953	1418	0.0366	0.120	0.0373	0.122	0.0381	0.125	0.0389	0.128	
250000	127		637	7 by 7 by 13	826	1229	0.0440	0.144	0.0449	0.147	0.0457	0.150	0.0466	0.153	
211600	107	0000	532	19 by 28	683	1017	0.0515	0.169	0.0525	0.172	0.0536	0.176	0.0546	0.180	
167800	85	000	418	19 by 22	537	799	0.0649	0.213	0.0662	0.217	0.0675	0.221	0.0689	0.225	
133100	67.4	00	342	19 by 18	439	654	0.0818	0.268	0.0834	0.273	0.0851	0.279	0.0868	0.285	
105600	53.5	0	266	19 by 14	342	508	0.103	0.338	0.105	0.345	0.107	0.352	0.109	0.359	
83690	42.4	1	210	7 by 30	267	397	0.129	0.423	0.132	0.431	0.134	0.440	0.137	0.449	
66360	33.6	2	161	7 by 23	205	305	0.163	0.533	0.166	0.544	0.169	0.555	0.172	0.566	
52620	26.7	3	133	7 by 19	169	252	0.205	0.673	0.209	0.686	0.213	0.699	0.217	0.713	
41740	21.1	4	105	7 by 15	134	199	0.258	0.848	0.263	0.865	0.269	0.882	0.274	0.900	
33090	16.8	5	84	7 by 12	107	159	0.326	1.07	0.333	1.09	0.339	1.11	0.346	1.13	
26240	13.3	6	63	7 by 9	80	119	0.411	1.35	0.419	1.38	0.427	1.40	0.436	1.43	

${ }^{\text {A }}$ The constructions shown in this table are typical of those used in the industry. It is not intended that this table preclude other constructions which may be desireablesirable for specific applications. The constructions shown provide for finished, covered or non-covered, stranded conductor approximately of the area indicated. When specified by the purchaser, the number of strands may be increased to provide additional area to compensate for draw-down during subsequent processing.
${ }^{B}$ Values for the mass of the completed conductor are approximate. The mass values are based upon the standard stranding increments listed in Explanatory Note 6. ${ }^{C}$ Strand Construction-\#A by \#B by \#C: where \#C is the number of wires in each bunch-stranded member; \#B is the number of bunch stranded members which make-up each rope-stranded member; and \#A (where used) is the number of rope-stranded members in the conductor. Where \#A is not given, the conductor consists of one rope-stranded member. For example, 19 by 7 by 32 indicates a construction consisting of 19 rope-stranded members, each of which consists of 7 bunch-stranded members with 32 wires each.

TABLE 2 Construction Requirements of Class K Rope-Lay Stranded Copper Conductors Having Bunch Stranded Members ${ }^{A}$

Area of Cross Section			$\frac{\text { Wire }}{\text { Diameter }}$ $\frac{0.0100 \mathrm{In}}{}$ $(0.254 \mathrm{~mm})$	Approximate Mass ${ }^{B}$			Uncoated Copper				Coated Copper				
Area of Cross Section			Wire Diameter 0.0100 lm . (0.254 mm)	Approximate Mass ${ }^{\text {B }}$			Uneoated Gopper				Goated Copper				
cmil	mm^{2}	Size AWG	Nominal Number of Wires	Strand Construction A by B by C^{C}	Lb/1000 ft	Kg/km		al dc @ $20^{\circ} \mathrm{C}$		$\begin{aligned} & \text { mum dc } \\ & \text { ce @ } 20^{\circ} \mathrm{C} \end{aligned}$		nal dc @ $20^{\circ} \mathrm{C}$		$\begin{aligned} & \text { imum dc } \\ & \text { nce @ } 20^{\circ} \mathrm{C} \end{aligned}$	
1,000,000	507	10101	37 by 7 by 39	3272	4869	0.0111	0.0364	0.0113	0.0371	0.0119	0.0391	0.0121	0.0399	
900,000	456	\ldots	9065	37 by 7 by 35	2936	4369	0.0123	0.0405	0.0125	0.0413	0.0132	0.0434	0.0135	0.0443	
800,000	405	7980	19 by 7 by 60	2585	3846	0.0139	0.0455	0.0142	0.0464	0.0149	0.0489	0.0152	0.0499	
750,000	380	7581	19 by 7 by 57	2455	3654	0.0148	0.0485	0.0151	0.0495	0.0159	0.0521	0.0162	0.0531	
700,000	355	6916	19 by 7 by 52	2240	3333	0.0159	0.0520	0.0162	0.0530	0.0170	0.0558	0.0173	0.0569	
650,000	329	6517	19 by 7 by 49	2111	3141	0.0171	0.0560	0.0174	0.0571	0.0183	0.0601	0.0187	0.0613	
600,000	304	5985	19 by 7 by 45	1938	2885	0.0185	0.0607	0.0189	0.0619	0.0199	0.0651	0.0203	0.0664	
550,000	279	\ldots	5453	19 by 7 by 41	1766	2628	0.0202	0.0662	0.0206	0.0675	0.0217	0.0711	0.0221	0.0725	क1
500,000	253	5054	19 by 7 by 38	1637	2436	0.0222	0.0728	0.0226	0.0743	0.0238	0.0782	0.0243	0.0798	드를
450,000	228	4522	19 by 7 by 34	1465	2180	0.0247	0.0809	0.0252	0.0825	0.0265	0.0869	0.0270	0.0886	-
400,000	203	3990	19 by 7 by 30	1292	1923	0.0277	0.0910	0.0283	0.0928	0.0298	0.0977	0.0304	0.0997	W
350,000	177	3458	19 by 7 by 26	1120	1667	0.0317	0.104	0.0323	0.106	0.0340	0.112	0.0347	0.114	$\stackrel{1}{ \pm}$
300,000	152	2989	7 by 7 by 61	959	1427	0.0366	0.120	0.0373	0.122	0.0393	0.129	0.0401	0.132	N
250,000	127	2499	7 by 7 by 51	802	1193	0.0440	0.144	0.0449	0.147	0.0472	0.155	0.0481	0.158	
211,600	107	0000	2107	7 by 7 by 43	676	1006	0.0520	0.171	0.0530	0.174	0.0558	0.183	0.0569	0.187	
167,800	85	000	1666	7 by 7 by 34	535	795	0.0655	0.215	0.0668	0.219	0.0703	0.231	0.0717	0.236	\checkmark
133,100	67.4	00	1323	7 by 7 by 27	424	632	0.0826	0.271	0.0843	0.276	0.0887	0.291	0.0905	0.297	
105,600	53.5	0	1064	19 by 56	338	503	0.103	0.338	0.105	0.345	0.111	0.363	0.113	0.370	
83,690	42.4	1	836	19 by 44	266	395	0.130	0.427	0.133	0.435	0.140	0.458	0.142	0.467	
66,360	33.6	2	665	19 by 35	211	315	0.164	0.538	0.167	0.549	0.176	0.578	0.180	0.590	
52,620	26.7	3	532	19 by 28	169	252	0.207	0.679	0.211	0.693	0.222	0.729	0.227	0.744	
41,740	21.1	4	420	7 by 60	132	197	0.258	0.848	0.264	0.865	0.277	0.910	0.283	0.928	
33,090	16.8	5	336	7 by 48	106	157	0.326	1.07	0.333	1.09	0.350	1.15	0.357	1.17	
26,240	13.3	6	266	7 by 38	84	125	0.411	1.35	0.419	1.38	0.441	1.45	0.450	1.48	
20,820	10.5	7	210	7 by 30	66	98	0.518	1.70	0.528	1.73	0.556	1.82	0.567	1.86	
16,510	8.37	8	168	7 by 24	53	79	0.653	2.14	0.666	2.19	0.701	2.30	0.715	2.35	
13,090	6.63	9	133	7 by 19	42	62	0.824	2.70	0.840	2.76	0.885	2.90	0.902	2.96	

[^1]TABLE 3 Construction requirements of Class M Rope-Lay Stranded Copper Conductors Having Bunch Stranded Members ${ }^{A}$

${ }^{A}$ The constructions shown in this table are typical of those used in the industry. It is not intended that this table preclude other constructions which may be desirable for specific applications. The constructions shown provide for finished covered or non-covered stranded conductor approximately of the area indicated. When specified by the purchaser, the number of strands may be increased to provide additional area to compensate or draw-down during subsequent processing.
${ }^{B}$ Values for the mass of the completed conductor are approximate. The mass values are based upon the standard stranding increments listed in Explanatory Note 6.
${ }^{C}$ Strand construction - A by B by C where C is the number of wires in each bunch-stranded member, B is the number of bunch-stranded members which make up each rope stranded member, and A (where used) is the number of rope-stranded members in the conductor. Where A is not given, the conductor consists of one rope-stranded member. For example, 19 by 7 by 32 indicates a construction consisting of 19 rope-stranded members each of which consist of 7 bunch-stranded members with 32 wires each.

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.04 on Conductors of Copper and Copper Alloys.

 Current edition approved April 1, 2015 April 1, 2017. Published April 2015April 2017. Originally approved in 1942 to replace portions of B158_- 41 T. Last previous edition approved in 20102015 as B172 - 10-B172-10 (2015). DOI: 10.1520/B0172-10R15-10.1520/B0172-17.
 ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.
 ${ }^{3}$ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

[^1]: The constructions shown in this table are typical of those used in the industry. It is not intended that this table preclude other constructions which may be desirable for specific applications. The constructions shown provide for finished covered or non-covered stranded conductor approximately of the area indicated. When specified by the purchaser, the number of strands may be increased to provide additional area to compensate for draw-down during subsequent processing.
 ${ }^{B}$ Values for the mass of the completed conductor are approximate. The mass values are based upon the standard stranding increments listed in Explanatory Note 6 .
 c Strand construction - A by B by C where C is the number of wires in each bunch-stranded member, B is the number of bunch-stranded members which make up each rope stranded member, and A (where used) is the number of rope-stranded members in the conductor. Where A is not given, the conductor consists of one rope-stranded member. For example, 19 by 7 by 32 indicates a construction consisting of 19 rope-stranded members each of which consist of 7 bunch-stranded members with 32 wires each

