

Designation: $A340 - 16 A340 - 16^{\epsilon 1}$

Standard Terminology of Symbols and Definitions Relating to Magnetic Testing¹

This standard is issued under the fixed designation A340; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (\$\epsilon\$) indicates an editorial change since the last revision or reapproval.

ε¹ NOTE—Editorial corrections made throughout in May 2017

INTRODUCTION

In preparing this glossary of terms, an attempt has been made to avoid, where possible, vector analysis and differential equations so as to make the definitions more intelligible to the average worker in the field of magnetic testing. In some cases, rigorous treatment has been sacrificed to secure simplicity, but it is believed that none of the definitions will prove to be misleading.

It is the intent of this glossary to be consistent in the use of symbols and units with those found in ANSI/IEEE 260-1978 and USA Standard Y 10.5-1968.

Part 1—Symbols Used in Magnetic Testing

Symbol		Term	
	α Α Α' Β	cross-sectional area of <i>B</i> coil cross-sectional area of specimen solid area	
	В	magnetic flux density magnetic induction	
	B _m B _{max} B _r B _{rs} B _s cf CM d D _B df D _m E	excursion range of induction biased induction remanent induction remanence energy product maximum energy product incremental induction intrinsic induction intrinsic induction in a hysteresis loop maximum induction in a flux current loop residual induction retentivity saturation induction crest factor cyclically magnetized condition lamination thickness demagnetizing coefficient distortion factor magnetic dissipation factor exciting voltage induced primary voltage	
	E₁ E₂ E₁ f ℱ Ħ H	induced secondary voltage flux volts cyclic frequency in hertz magnetomotive force form factor magnetic field strength excursion range of magnetic field strength	

¹ This terminology is under the jurisdiction of ASTM Committee A06 on Magnetic Properties and is the direct responsibility of Subcommittee A06.92 on Terminology and Definitions.

Current edition approved May 1, 2016. Published May 2016. Originally approved in 1949. Last previous edition approved in 2015 as A340 – 15. DOI: 10.1520/A0340-16.10.1520/A0340-16E01.

H_b	biasing magnetic field strength
	coercive field strength
	intrinsic coercive field strength
	demagnetizing field strength
	incremental magnetic field strength
	air gap magnetic field strength
H_{L}^{rg}	ac magnetic field strength (from an assumed
	g ,
	peak value of magnetizing current
	maximum magnetic field strength in a hyster-
	esis loop
·······	maximum magnetic field strength in a flux-
	current loop
	ac magnetic field strength (from a measured
	peak value of exciting current)
H_t	instantaneous magnetic field strength (coinci-
	dent with B_{max})
H_z	ac magnetic field strength force (from an as-
	sumed peak value of exciting current)
	ac exciting current (rms value)
	ac core loss current (rms value)
	constant current
dc .	ac magnetizing current (rms value)
	magnetic polarization coupling coefficient
	flux path length
•	effective flux path length
	gap length
	flux linkage
\mathcal{L}_{m}	mutual flux linkage
L	self inductance
L_1	core inductance
$\stackrel{\cdot}{L_{\Delta}}$	incremental inductance
	intrinsic inductance
	mutual inductance
	initial inductance
0	series inductance
	winding inductance
	magnetic moment
	magnetization
	total mass of a specimen
	active mass of a specimen
	demagnetizing factor
N_1	turns in a primary winding
N_2	turns in a secondary winding
$N_1 I/\ell_1$ ASTM A340-16e1	ac excitation
P . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	magnetic pole strength
	permeance / 260 fae 26/astm-a340-16e1
P	active (real) power
	apparent power
	specific apparent power
P_{c}	total core loss
P	specific core loss
	incremental core loss
	normal eddy current core loss
	normal dady durion dolle 1000
	incremental addy current core loss
	incremental eddy current core loss
P_h	normal hysteresis core loss
$P_h = P_{\Delta h}$	normal hysteresis core loss incremental hysteresis core loss
$egin{aligned} P_h \ P_{\Delta h} \ P_q \end{aligned}$	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power
$egin{aligned} P_h \ P_{\Delta h} \ P_q \ P_r \end{aligned}$	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss
$egin{array}{l} P_h \ P_{\Delta h} \ P_q \ P_r \ P_w \end{array}$	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss)
P_h $P_{\Delta h}$ P_q P_r P_w P_z	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power
P_h $P_{\Delta h}$ P_q P_r P_w P_z	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss)
P_h $P_{\Delta h}$ P_q P_r P_w P_z P_z P_z P_z	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power
P_h $P_{\Delta h}$ P_q P_r P_w P_z $P_{z(B:f)}$ Q_m	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power
P_h $P_{\Delta h}$ P_q P_r P_w P_z $P_{Z(B:f)}$ Q_m \Re	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor
P_h $P_{\Delta h}$ P_q P_r P_v P_z P_z $P_{Z_c(B:f)}$ Q_m \Re	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance
P_h $P_{\Delta h}$ P_q P_q P_r P_w P_z P_z P_z P_R R_1 R_w	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance
P_h $P_{\Delta h}$ P_q P_r P_v P_z	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor)
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z P_z Q_m \Re R_1 R_w S SCM	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z $P_{z(B:t)}$ Q_m \Re R_1 R_w S SCM T_c	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature
P_h $P_{A,b}$ P_q P_r P_r P_w P_z $P_z(B:t)$ Q_m \Re R_1 R_w S SCM T_c W	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z $P_z(B:t)$ Q_m \Re R_1 R_w S SCM T_c W W_h	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width hysteresis loop loss
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z $P_z(B:t)$ Q_m \Re R_1 R_w S SCM T_c W W_h $\bar{\alpha}$	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width hysteresis loop loss linear expansion, coefficient (average)
P_h $P_{\Delta h}$ $P_{\Delta h}$ P_{P_q} P_r P_r P_w P_z P_z $(B:t)$ Q_m \Re R_1 R_w S SCM T_c W W_h $\bar{\alpha}$ $\Delta \chi$	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width hysteresis loop loss linear expansion, coefficient (average) incremental tolerance
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z $P_z(B:t)$ Q_m \Re R_1 R_w S SCM T_c W W_h W	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width hysteresis loop loss linear expansion, coefficient (average) incremental tolerance hysteretic angle
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width hysteresis loop loss linear expansion, coefficient (average) incremental tolerance hysteretic angle loss angle
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width hysteresis loop loss linear expansion, coefficient (average) incremental tolerance hysteretic angle loss angle magnetic power factor
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width hysteresis loop loss linear expansion, coefficient (average) incremental tolerance hysteretic angle loss angle
P_h $P_{\Delta h}$ P_q P_r P_r P_w P_z $P_z(B:t)$ Q_m \Re R_1 R_w S SCM T_c W W_h $\bar{\alpha}$ $\Delta \chi$ β γ $\cos \gamma$ γ_p	normal hysteresis core loss incremental hysteresis core loss reactive (quadrature) power residual core loss winding loss (copper loss) exciting power specific exciting power magnetic storage factor reluctance core resistance winding resistance lamination factor (stacking factor) symmetrically cyclically magnetized condition Curie temperature lamination width hysteresis loop loss linear expansion, coefficient (average) incremental tolerance hysteretic angle loss angle magnetic power factor

$\begin{array}{llllllllllllllllllllllllllllllllllll$	δ	density
$\begin{array}{llllllllllllllllllllllllllllllllllll$	κ	susceptibility
$\begin{array}{llllllllllllllllllllllllllllllllllll$	ac Permeabilities:	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	μ_a	ideal permeability
$\begin{array}{llllllllllllllllllllllllllllllllllll$		inductance permeability
$\begin{array}{llll} \mu_{Od} & & & & & & & \\ \mu_{P} & & & & & & & \\ \mu_{P} & & & & & & \\ \mu_{AP} & & & & & & \\ \mu_{I} & & & & & & \\ \mu_{Z} & & & & & \\ \mu_{AZ} & & & \\ \mu_{AZ} & & & \\ \mu_{AZ} & & & & \\ \mu_{AZ} & & & & \\ \mu_{AZ} &$	• =	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	•	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{lll} dc \ Permeabilities: \\ \mu \\ \mu_{abs} \\ \mu_d \\ \mu_d \\ \mu_{\Delta} \\ \mu_{eff} \\ \mu_{\Delta i} \\ \mu_{\pi} \\ \mu_{\pi} \\ \mu_{\pi} \\ \mu_{r} \\ $	· -	
$\begin{array}{llll} \mu & & & & & & & & \\ \mu_{abs} & & & & & & & \\ \mu_d & & & & & & & \\ \mu_d & & & & & & & \\ \mu_{\Delta} & & & & & & & \\ \mu_{eff} & & & & & & & \\ \mu_{\Delta i} & & & & & & \\ \mu_{m} & & & & & & \\ \mu_{r} & & & & & \\ \mu_{r} & & & & & & \\ \mu_{r} & & & & \\ \mu_{r} & & & & & \\ \mu_{r} & & & & & \\ \mu_{r} & & & \\ \mu_{r} & & & & \\ \mu_{r} & & & & \\ \mu_{r} & & & \\ \mu_{r} & & & & \\ \mu_{r} & $		more management
$\begin{array}{c} \mu_{abs} \\ \mu_{d} \\ \nu_{d} \\ \nu_{d} \\ \nu_{\Delta} \\ \nu_{\Delta} \\ \nu_{eff} \\ \nu_{eff} \\ \nu_{di} \\ \nu_{m} \\ \nu_{m} \\ \nu_{incremental permeability} \\ \nu_{incremental permeability} \\ \nu_{m} \\ \nu_{incremental intrinsic permeability} \\ \nu_{incremental intrinsic permeability} \\ \nu_{incremental intrinsic permeability} \\ \nu_{intital permeability} \\ \nu_{intital permeability} \\ \nu_{rev} \\ \nu_{rev}$		normal permeability
$\begin{array}{c} \mu_{d} \\ \mu_{\Delta} \\ \mu_{Eff} \\ \nu_{eff} \\ \nu_{\Delta i} \\ \nu_{m} \\ \nu_{m} \\ \nu_{i} \\ \nu_{r} \\ \nu$	-	
$\begin{array}{llll} \mu_{\Delta} & & & & & & & & \\ \mu_{eff} & & & & & & & & \\ \mu_{eff} & & & & & & & & \\ \mu_{\Delta i} & & & & & & & \\ \mu_{m} & & & & & & & \\ \mu_{i} & & & & & & & \\ \mu_{i} & & & & & & & \\ \mu_{r} & & & & & & \\ \mu_{rev} & & & & & & \\ \mu_{rev} & & & & & & \\ \mu_{rot} & & & & & \\ \mu_{rev} & & & & & \\ \mu_{rot} & & & \\ \mu_{rot} & & & \\ \mu_{rot} & & & & \\ \mu_{rot} & & & & \\ \mu_{rot} & & & \\ \mu_{rot$		
$\begin{array}{lllll} \mu_{eff} & & & & & & & & & & \\ \mu_{\Delta i} & & & & & & & & & \\ \mu_{m} & & & & & & & & & \\ \mu_{i} & & & & & & & & & \\ \mu_{i} & & & & & & & & \\ \mu_{i} & & & & & & & & \\ \mu_{r} & & & & & & & & \\ \mu_{r} & & & & & & & & \\ \mu_{rev} & & & & & & & \\ \mu_{rev} & & & & & & & \\ \mu_{rev} & & & & & & & \\ \mu_{rev} & & & & & & & \\ \mu_{rev} & & & & \\ \mu_{rev} & & & & \\ \mu$	· -	
$\begin{array}{c} \mu_{\Delta i} \\ \mu_{m} \\ \mu_{i} \\ \mu_{i} \\ \mu_{r} \\ \mu_{r}$. –	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c} \mu_{l} \\ \mu_{r} \\ \mu_{r} \\ \mu_{r} \\ \mu_{v} \\ \mu_{rev} \\ \mu_{rev} \\ \mu_{rot} \\ \nu \\ \gamma \\ \gamma$		
$\begin{array}{c} \mu_r \\ \mu_r \\ \nu_r \\$		
$μ_ν$ space permeability $μ_{reν}$ reversible permeability $μ_{reν}$ figure of merit reluctivity $π$ the numeric 3.1416 $ρ$ resistivity $φ$ magnetic flux $φ$ flux linkage (see \pounds) $χ$ mass susceptibility $χ$ initial susceptibility		, ,
$μ_{rev}$ reversible permeability $μ'/cot γ$ figure of merit $ν$ reluctivity $π$ the numeric 3.1416 $ρ$ resistivity $φ$ magnetic flux $φN$ flux linkage (see $£$) $χ$ mass susceptibility $χ$ initial susceptibility		
$μ/cot$ γ figure of merit $ν$ reluctivity $π$ the numeric 3.1416 $ρ$ resistivity $φ$ magnetic flux $φ$ N flux linkage (see \mathscr{L}) $χ$ mass susceptibility $χ$ initial susceptibility		
$\begin{array}{c} v \\ reluctivity \\ \pi \\ \hline \pi \\ resistivity \\ \phi \\ resistivity \\ \phi \\ resistivity \\ \phi \\ resistivity \\ \phi \\ resistivity \\ magnetic flux \\ flux linkage (see \mathcal{L}) \\ \pi \\ resistivity \\ man \\ resistivity \\ resistivity$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· · · · · · · · · · · · · · · · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
φN flux linkage (see \mathscr{L}) χ mass susceptibility χ_0 initial susceptibility	-	
πass susceptibility π initial susceptibility		
χ _o initial susceptibility	•	
angular frequency in radians per second		
angular nequerity in radiatio per eccent	ω	

Part 2—Definition of Terms Used in Magnetic Testing

ac excitation, N_1/ℓ_1 —the ratio of the rms ampere-turns of exciting current in the primary winding of an inductor to the effective flux path length of the inductor.

active (real) power, P—the product of the rms current, I, in an electrical circuit, the rms voltage, E, across the circuit, and the cosine of the angular phase difference, θ between the current and the voltage.

$$P = EI \cos\theta$$
ASTM A340-16e

Discussion—ndards.iteh.ai/catalog/standards/sist/06bcd1e8-f13d-45e1-8c7e-1279ed9fae26/astm-a340-16e1

The portion of the active power that is expended in a magnetic core is the total core loss, P_c .

aging coefficient—the percentage change in a specific magnetic property resulting from a specific aging treatment.

Discussion—

The aging treatments usually specified are:

(a) 100 h at 150°C or

(b) 600 h at 100°C.

aging, magnetic—the change in the magnetic properties of a material resulting from metallurgic change due to a normal or specified aging condition.

DISCUSSION-

This term implies a deterioration of the magnetic properties of magnetic materials for electronic and electrical applications, unless otherwise specified.

air-gap magnetic field strength, H_g —the magnetic field strength required to produce the induction existing at some point in a nonmagnetic gap in a magnetic circuit.

DISCUSSION-

In the cgs-emu system of units, H_g is numerically equal to the induction existing at such a point and exceeds the magnetic field strength in the magnetic material.

amorphous alloy—a semiprocessed alloy produced by a rapid quenching, direct casting process resulting in metals with noncrystalline structure.

ampere (turn), A—the unit of magnetomotive force in the SI system of units. The symbol A represents the unit of electric current, ampere, in the SI system of units.

ampere per metre, A/m—the unit of magnetic field strength in the SI system of units.

anisotropic material—a material in which the magnetic properties differ in various directions.

anisotropy of loss—the ratio of the specific core loss measured with flux parallel to the rolling direction to the specific core loss with flux perpendicular to the rolling direction.

anisotropy of loss =
$$\frac{P_{c (B:f) l}}{P_{c (B:f) l}}$$

where:

 $P_{c(B;t),l}$ = specific core loss value with flux parallel to the rolling direction, W/lb [W/kg], and $P_{c(B;f),t}$ = specific core loss value with flux perpendicular to the rolling direction, W/lb [W/kg].

DISCUSSION-

This definition of anisotropy normally applies to electrical steels with measurements made in an Epstein frame at a flux density of 15 kG [1.5 T] and a frequency of 60 Hz (see Test Method A343).

anisotropy of permeability—the ratio of relative peak permeability measured with flux parallel to the rolling direction to the relative peak permeability measured with flux perpendicular to the rolling direction.

anisotropy of permeability =
$$\frac{\mu_{prl}}{\mu_{prt}}$$

where:

 μ_{prl} = relative peak permeability value with flux parallel to the rolling direction, and

 μ'_{prt} = relative peak permeability value with flux perpendicular to the rolling direction.

DISCUSSION-

This definition of anisotropy normally applies to electrical steels with measurements made in an Epstein frame at a flux density of 15 kG [1.5 T] and a frequency of 60 Hz (see Test Method A343).

antiferromagnetic material—a feebly magnetic material in which almost equal magnetic moments are lined up antiparallel to each other. Its susceptibility increases as the temperature is raised until a critical (Neél) temperature is reached; above this temperature the material becomes paramagnetic.

apparent power, P_a —the product (volt-amperes) of the rms exciting current and the applied rms terminal voltage in an electric circuit containing inductive impedance. The components of this impedance as a result of the winding will be linear, while the components as a result of the magnetic core will be nonlinear. The unit of apparent power is the volt-ampere, VA.

apparent power, specific, $P_{a(B;f)}$ —the value of the apparent power divided by the active mass of the specimen, that is, volt-amperes per unit mass. The values of voltage and current are those developed at a maximum value of cyclically varying induction B and specified frequency f.

area, A—the geometric cross-sectional area of a magnetic path which is perpendicular to the direction of the induction.

Bloch wall—a domain wall in which the magnetic moment at any point is substantially parallel to the wall surface. See also domain wall.

Bohr magneton—a constant that is equal to the magnetic moment of an electron because of its spin. The value of the constant is $(9\ 274\ 078 \times 10^{-21}\ erg/gauss\ or\ 9\ 274\ 078 \times 10^{-24}\ J/T)$.

cgs-emu system of units—the system for measuring physical quantities in which the base units are the centimetre, gram, and second, and the numerical value of the magnetic constant, μ_0 , is unity.

coercive field strength, H_{cB} —the absolute value of the applied magnetic field strength (H) required to restore the magnetic flux density (B) to zero.

DISCUSSION-

The symbol H_c has historically been used to denote the coercive field strength determined from a (B,H) loop. Further use of this symbol in ASTM A06 standards is deprecated.

DISCUSSION-

The coercive field strength monotonically increases with increasing maximum magnetic field strength (H_m) reaching a maximum or limiting value termed the **coercivity**. Unless it is known that the material has been magnetized to saturation, the term coercive field strength is preferred.

DISCUSSION-

The coercive field strength is not completely described without knowing the maximum magnetic flux density (B_m) or maximum magnetic field strength (H_m) used in the measurement.

coercive field strength, intrinsic, H_{cJ} —the absolute value of the applied magnetic field strength (H) required to restore either the magnetic polarization (J) or magnetization (M) to zero.

DISCUSSION-

The symbol H_{ci} has historically been used to denote the intrinsic coercive field strength determined from a (B_i, H) loop. Further use of this symbol in ASTM A06 standards is deprecated.

DISCUSSION-

The intrinsic coercive field strength monotonically increases with increasing maximum magnetic field strength (H_m) reaching a maximum or limiting value termed the **intrinsic coercivity**. Unless it is known that the material has been magnetized to saturation, the term intrinsic coercive field strength is preferred.

Discussion—

hysteresis loop.

The measured value of intrinsic coercive field strength will be the same whether it is measured from a magnetic polarization (J,H) or a magnetization (M,H) hysteresis loop and will always be numerically larger than the coercive field strength (H_{cB}) measured from a magnetic flux density (B,H)

https://standards.iteh.ai/catalog/standards/sist/06bcd1e8-f13d-45e1-8c7e-1279ed9fae26/astm-a340-16e1

The intrinsic coercive field strength is not completely described without knowing the maximum magnetic polarization, maximum magnetization or maximum magnetic field strength (H_m) used in the measurement.

coercivity—see coercive field strength.

coercivity, intrinsic—see coercive field strength, intrinsic.

core, **laminated**—a magnetic component constructed by stacking suitably thin pieces of magnetic material which are stamped, sheared, or milled from sheet or strip material. Individual pieces usually have an insulating surface coating to minimize eddy current losses in the assembled core.

core, mated—two or more magnetic core segments assembled with the magnetic flux path perpendicular to the mating surface.

core, **powder** (**dust**)—a magnetic core comprised of small particles of electrically insulated metallic ferromagnetic material. These cores are characterized by low hysteresis and eddy current losses.

core, **tape-wound**—a magnetic component constructed by the spiral winding of strip material onto a suitable mandrel. The strip material usually has an insulating surface coating which reduces interlaminar eddy current losses in the finished core.

core loss, ac eddy current, incremental, P_{Ae} —the power loss caused by eddy currents in a magnetic material that is cyclically magnetized.

core loss, ac eddy current, normal, P_e —the power losses as a result of eddy currents in a magnetic material that is symetrically cyclically magnetized.

DISCUSSION-

The voltage is generally assumed to be across the parallel combination of core inductance, L_1 , and core resistance, R_1 .

core loss, ac, incremental, $P_{c\Delta}$ —the core loss in a magnetic material when the material is subjected simultaneously to a dc biasing magnetizing force and an alternating magnetizing force.

core loss, residual, P_r —the portion of the core loss power, P_c , which is not attributed to hysteresis or eddy current losses from classical assumptions.

core loss, ac, specific, $P_{c(B;f)}$ —the active power (watts) expended per unit mass of magnetic material in which there is a cyclically varying induction of a specified maximum value, B, at a specified frequency, f.

core loss, ac, (total), P_c —the active power (watts) expended in a magnetic circuit in which there is a cyclically alternating induction.

DISCUSSION-

Measurements of core loss are normally made with sinusoidally alternating induction, or the results are corrected for deviations from the sinusoidal condition.

core loss density—the active power (watts) expended in a magnetic core in which there is a cyclically varying induction of a specified maximum value, *B*, at a specified frequency, *f*, divided by the effective volume of the core.

DISCUSSION-

This parameter is normally used only for non-laminated cores such as ferrite and powdered cores.

core plate—a generic term for any insulating material, formed metallurigically or applied externally as a thin surface coating, on sheet or strip stock used in the construction of laminated and tape wound cores.

coupling coefficient, k'—the ratio of the mutual inductance between two windings and the geometric mean of the individual self-inductances of the windings.

crest factor, cf—the ratio of the maximum value of a periodically alternating quantity to its rms value.

DISCUSSION-

ASTM A340-16e1

For a sinusoidal variation the crest factor is $\sqrt{2}$ lards/sist/06bcd1e8-f13d-45e1-8c7e-1279ed9fae26/astm-a340-16e1

Curie temperature, T_c—the temperature above which a ferromagnetic or ferrimagnetic material becomes paramagnetic.

current, ac core loss, I_c —the rms value of the in-phase component (with respect to the induced voltage) of the exciting current supplied to a coil which is linked with a ferromagnetic core.

current, ac exciting, I—the rms value of the total current supplied to a coil that is linked with a ferromagnetic core.

DISCUSSION-

Exciting current is measured under the condition that any other coil linking the same core carries no current.

current, ac, magnetizing, I_m —the rms value of the magnetizing component (lagging with respect to applied voltage) of the exciting current supplied to a coil that is linked with a ferromagnetic core.

current, dc, I_{dc} —a steady-state dc current. A dc current flowing in an inductor winding will produce a unidirectional magnetic field in the magnetic material.

customary units—a set of industry-unique units from the cgs-emu system of units and U.S. inch-pound systems and units derived from the two systems.

DISCUSSION-

Examples of customary units used in ASTM A06 standards include:

Quantity Name	Quantity Symbol	Unit Name	Unit Symbol
Magnetic field strength	Н	oersted	Oe
Magnetic induction (magnetic	₿	gauss	G
—flux density)			
Magnetic flux density	<u>B</u>	gauss	<u>G</u>
(magnetic induction)			
Specific core loss	$P_c(\beta; f)$	watt/pound	W/lb
Specific core loss	$P_{c(B:f)}$	watt/pound	<u>W/lb</u>

cyclically magnetized condition, *CM*—a magnetic material is in a cyclically magnetized condition when, after having been subjected to a sufficient number of identical cycles of magnetizing field, it follows identical hysteresis or flux-current loops on successive cycles which are not symmetrical with respect to the origin of the axes.

demagnetization curve—the portion of a flux versus dc current plot (dc hysteresis loop) that lies in the second or fourth quadrant, that is, between the residual induction point, B_r , and the coercive force point, H_c . Points on this curve are designated by the coordinates, B_d and H_d .

demagnetizing coefficient, D_B —is defined by the equation:

$$D_B = \left[\mu_0 (H_a - H)\right] / B_i$$

where:

 H_a = applied magnetic field strength,

H = magnetic field strength actually existing in the magnetic material,

 B_i = intrinsic induction, and

 $\mu_0' = 1$ in the cgs system and $4\pi \times 10^{-7}$, henry/metre in the SI system.

DISCUSSION—

iTeh Standards

For a closed, uniform magnetic circuit, the demagnetizing coefficient is zero.

demagnetizing factor, N_D —defined as 4π times the demagnetizing coefficient, D_B .

demagnetizing field strength, H_d —a magnetic field strength applied in such a direction as to reduce the induction in a magnetized body. See **demagnetization curve**.

density, δ —the ratio of mass to volume of a material. In the cgs-emu system of units, g/cm³. In SI units, kg/m³.

diamagnetic material—a material whose relative permeability is less than unity. 67e-1279ed9fae26/astm-a340-16e1

DISCUSSION-

The intrinsic induction, B_i , is oppositely directly to the applied magnetizing force H.

disaccommodation—a time dependent change of magnetic properties, especially the initial permeability, that occurs after demagnetization of a magnetic material. This change is usually due to the motion of point defects such as vacancies and interstitial atoms, occurs over a time period measured in seconds or minutes, and is reversible by demagnetization. It is a different phenomenon than magnetic aging which (a) typically involves the clustering of impurity atoms or precipitation of a new phase, (b) occurs over a much longer time period (normally weeks or months at room temperature), and (c) the changes are not reversible by demagnetization.

dissipation factor, magnetic, D_m —the tangent of the hysteretic angle that is equal to the ratio of the core loss current, I_c , to the magnetizing current, I_m . Thus:

$$D_m = \tan \beta = \cot \gamma = I_c/I_m = \omega L_1/R_1 = I/Q_m$$

DISCUSSION-

This dissipation factor is also given by the ratio of the energy dissipated in the core per cycle of a periodic *SCM* excitation (hysteresis and eddy current heat loss) to 2π times the maximum energy stored in the core.

distortion, harmonic—the departure of any periodically varying waveform from a pure sinusoidal waveform.

DISCUSSION-

The distorted waveform that is symmetrical about the zero amplitude axis and is most frequently encountered in magnetic testing contains only the odd harmonic components, that is fundamental, 3rd harmonic, 5th harmonic, and so forth. Nonsymmetrical distorted waveforms must contain some even harmonic components, in addition to the fundamental and, perhaps, some odd harmonic components.

distortion factor, df—a numerical measure of the distortion in any ac nonsinusoidal waveform. For example, if by Fourier analysis or direct measurement E_1 , E_2 , E_3 , and so forth are the effective values of the pure sinusoidal harmonic components of a distorted voltage waveform, then the distortion factor is the ratio of the root mean square of the second and all higher harmonic components to the fundamental component.

$$df = \left[E_2^2 + E_3^2 + E_4^2 + \cdots\right]^{1/2} E_1$$

DISCUSSION-

There are no dc components (E_0) in the distortion factor.

domains, ferromagnetic—magnetized regions, either macroscopic or microscopic in size, within ferromagnetic materials. Each domain, in itself, is magnetized to intrinsic saturation at all times, and this saturation induction is unidirectional within the domain.

domain wall—a boundary region between two adjacent domains within which the orientation of the magnetic moment of one domain changes into a different orientation of the magnetic moment in the other domain.

eddy current—an electric current developed in a material as a result of induced voltages developed in the material.

effective circuit permeability, μ_{eff} —when a magnetic circuit consists of two or more components, each individually homogeneous throughout but having different permeability values, the effective (overall) permeability of the circuit is that value computed in terms of the total magnetomotive force, the total resulting flux, and the geometry of the circuit.

electrical steel—a term used commercially to designate strip or sheet used in electrical applications and historically has referred to flat-rolled, low-carbon steels or alloyed steels with silicon or aluminum, or both. Common types of electrical steels used in the industry are grain-oriented electrical steel, nonoriented electrical steel, and magnetic lamination steel.

electrical steel, grain oriented—a flat-rolled silicon-iron alloy usually containing approximately 3 % silicon, having enhanced magnetic properties in the direction of rolling and normally used in transformer cores.

electrical steel, nonoriented—a flat-rolled silicon-iron or silicon-aluminum-iron alloy containing 0.0 to 3.5 % silicon and 0.0 to 1.0 % aluminum and having similar core loss in all directions.

emu—the notation emu is an indicator of electromagnetic units. When used in conjunction with magnetic moment, m, it denotes units of ergs per oersted, erg/Oe. A moment of 1 erg/Oe is produced by a current of 10 amperes (1 abampere) flowing in a loop of area 1 cm². The work done to rotate a moment of 1 erg/Oe from parallel to perpendicular in a uniform field of 1 Oe is 1 erg. The conversion to the SI units of magnetic moment J/T (joule/tesla) or A m² is given by:

$$\frac{\text{erg/Oe}\left(\text{cgs} - \text{emu}\right)}{\text{J/T}\left(\text{SI}\right)} \equiv \frac{10 \text{ amperes cm}^2\left(\text{cgs} - \text{emu}\right)}{\text{A m}^2\left(\text{SI}\right)} = 10^{-3} \tag{1}$$

Magnetization, M, the magnetic moment per unit volume, has units erg/(Oe-cm³), often expressed as emu/cm³.

energy product, B_dH_d —the product of the coordinate values of any point on a demagnetization curve.

energy-product curve, magnetic—the curve obtained by plotting the product of the corresponding coordinates, B_d and H_d , of points on the demagnetization curve as abscissa against the induction, B_d , as ordinates.

DISCUSSION-

The maximum value of the energy product, $(B_dH_d)_m$, corresponds to the maximum value of the external energy.

Discussion—

The demagnetization curve is plotted to the left of the vertical axis and usually the energy-product curve to the right.

energy product, maximum $(B_dH_d)_m$ —for a given demagnetization curve, the maximum value of the energy product.

equipment test level accuracy—(1) For a single test equipment, using a large group of test specimens, the average percentage of test deviation from the correct average value. (2) The average percentage deviation from the average value obtained from similar tests, on the same test specimen or specimens, when measured with a number of other test equipments that have

```
∰ A340 – 16<sup>ε1</sup>
```

previously been proven to have both suitable reproducibility of measurement and test level, and whose calibrations and quality have general acceptance for standardization purposes and where better equipment for establishing the absolute accuracy of test is not available.

exciting current, ac, I—See current, ac exciting.

exciting power, rms, P_z —the product of the ac rms exciting current and the rms voltage induced in the exciting (primary) winding on a magnetic core.

DISCUSSION-

This is the apparent volt-amperes required for the excitation of the magnetic core only. When the core has a secondary winding, the induced primary voltage is obtained from the measured open-circuit secondary voltage multiplied by the appropriate turns ratio.

exciting power, specific, $P_{z(B;f)}$ —the value of the ac rms exciting power divided by the active mass of the specimen (volt-amperes/unit mass) taken at a specified maximum value of cyclically varying induction B and at a specified frequency f.

exciting voltage, E—the ac rms voltage across a winding linking the flux of a magnetic core. The voltage across the winding equals that across the assumed parallel combination of core inductance L_1 , and core resistance, R_1 .

feebly magnetic material—a material generally classified as "nonmagnetic," whose maximum normal permeability is less than 4.

ferrimagnetic material—a material whose atomic magnetic moments are both ordered and anti-parallel but being unequal in magnitude produce a net magnetization in one direction.

ferrite—a term referring to magnetic oxides in general, and especially to material having the formula M O Fe₂ O₃, where M is a divalent metal ion or a combination of such ions. Certain ferrites, magnetically "soft" in character, are useful for core applications at radio and higher frequencies because of their advantageous magnetic properties and high volume resistivity. Other ferrites, magnetically "hard" in character, have desirable permanent magnet properties.

ferromagnetic material—a material whose magnetic moments are ordered and parallel producing magnetization in one direction.

figure of merit, magnetic, μ **/cot** γ —the ratio of the real part of the complex relative permeability to the dissipation factor of a ferromagnetic material.

DISCUSSION-

ASTM A340-16e1

The figure of merit index of the magnetic efficiency of the core in various ac electromagnetic devices. 79ed 9fae 26/astm-a340-16e

flux-current loop, incremental (biased)—the curve developed by plotting magnetic induction, *B*, versus magnetic field strength, *H*, when the magnetic material is cyclically magnetized while under dc bias condition. This loop will not be symmetrical about the *B* and *H* axes.

flux-current loop, normal—the curve developed by plotting magnetic induction, *B*, versus magnetic field strength, *H*, when the magnetic material is symmetrically cyclically magnetized.

DISCUSSION-

The area of the loop is proportional to the sum of the static hysteresis loss and all dynamic losses.

flux linkage, \mathcal{L} —the sum of all flux lines in a coil.

$$\mathcal{L} = \varphi_1 + \varphi_2 + \varphi_3 + \cdots \varphi_N$$

where:

 $\varphi_I = \text{flux linking turn 1};$

 φ_2 = flux linking turn 2, and so forth; and

 φ_N = flux linking the *N*th turn.

DISCUSSION-

When the coupling coefficient, k', is less than unity, the flux linkage equals the product of the average flux linking the turns and the total number of turns. When the coupling coefficient is equal to unity, the flux linkage equals the product of the total flux linking the coil and the total number of turns.

flux linkage, mutual, \mathcal{L}_m —the flux linkage existing between two windings on a magnetic circuit. Mutual linkage is maximum when the coupling coefficient is unity.

flux path length, \(\ell \)—the distance along a flux loop.

flux path length, effective, ℓ_1 —the calculated length of the flux paths in a magnetic core, which is used in the calculations of certain magnetic parameters.

flux volts, E_f —the voltage induced in a winding of a magnetic component when the magnetic material is subjected to repeated magnetization under *SCM* or *CM* conditions.

 $E_f = 4.443 \ B_{\text{max}} A' N f \times 10^{-8} \text{ V (SCM excitation)}$ $E_f = 2.221 \ \Delta B A' N f \times 10^8 \text{ V (CM excitation)}$ $E_f = 1.1107 \ E_{\text{avg}}$

which:

A' = solid cross-sectional area of the core in cm²,

N =number of winding turns, and

f = the frequency in hertz.

form factor, #—the ratio of the rms value of a periodically alternating quantity to its average absolute value.

DISCUSSION-

For a sinusoidal variation, the form factor is:

$$\pi/2\sqrt{2} = 1.1107$$

frequency, angular, ω—the number of radians per second traversed by a rotating vector that represents any periodically varying quantity.

Discussion— (https://standards.iteh.ai)

Angular frequency, ω , is equal to 2π times the cyclic frequency, f.

frequency, cyclic, f—the number of hertz (cycles/second) of a periodic quantity.

gap length, ℓ_g —the distance that the flux transverses in the central region of a gap in a core having an "air" (nonmagnetic) gap in the flux path may be considered unity in the gap.

gauss (plural gausses), G—the unit of magnetic induction flux density in the cgs-emu system of units. The gauss is equal to 1 maxwell per square centimetre of or 10⁻⁴ tesla. See magnetic induction (flux density). flux density.

gilbert, Gb—the unit of magnetomotive force in the cgs-emu system of units. The gilbert is a magnetomotive force of $4\pi/10$ ampere-turns. See magnetomotive force.

gyromagnetic ratio, proton, γ_p —the ratio of the magnetic moment of a hydrogen nucleus to its angular momentum.

DISCUSSION-

The gyromagnetic ratio is used to calculate the magnetic field from a measured resonance frequency when using the nuclear magnetic resonance technique. The relationship is:

$$B = (2\pi f/\gamma_n)$$
 gausses $= (2 \pi f/\gamma_n) \times 10^{-4}$ teslas

where:

f = resonance frequency in cycles per second (hertz) and

 v_p = gyromagnetic ratio (the accepted value at present for water is 2.675 12 × 10⁴ gauss⁻¹ s⁻¹).

henry (plural henries), H—the unit of self- or mutual inductance. The henry is the inductance of a circuit in which a voltage of 1 V is induced by a uniform rate of change 1 A/s in the circuit. Alternatively, it is the inductance of a circuit in which an electric current of 1 A/s produces a flux linkage of one weber turn (Wb turn) or 10⁸ maxwell-turns. See inductance, mutual, and inductance, self.

hertz, Hz—the unit of cyclic frequency, f.

hysteresis loop, biased—an incremental hysteresis loop that lies entirely in any one quadrant.