This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Because it may not be technically possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current version of the standard as published by ASTM is to be considered the official document.

Designation: B286 - 07 (Reapproved 2012) B286 - 07 (Reapproved 2017)

Standard Specification for Copper Conductors for Use in Hookup Wire for Electronic Equipment¹

This standard is issued under the fixed designation B286; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the U.S. Department of Defense.

1. Scope

1.1 This specification covers uninsulated metallic-coated copper conductors for use in hookup wire for electronic equipment.

1.2 The SI values for density are to be regarded as standard. For all other properties, the inch-pound values are to be regarded as the standard.

<u>1.3 This international standard was developed in accordance with internationally recognized principles on standardization</u> established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 The following documents of the issue in effect on date of material purchase form a part of this specification to the extent referenced herein:

2.2 ASTM Standards:²

B33 Specification for Tin-Coated Soft or Annealed Copper Wire for Electrical Purposes

B189 Specification for Lead-Coated and Lead-Alloy-Coated Soft Copper Wire for Electrical Purposes

B193 Test Method for Resistivity of Electrical Conductor Materials

B258 Specification for Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical Conductors

B298 Specification for Silver-Coated Soft or Annealed Copper Wire

B355 Specification for Nickel-Coated Soft or Annealed Copper Wire

3. Ordering Information ai/catalog/standards/sist/350822b8-cca2-4aae-9408-f033e9e9eefa/astm-b286-072017

- 3.1 Orders for material under this specification shall include the following information:
- 3.1.1 Quantity of each size, designation (Table 1) and type,
- 3.1.2 Conductor size, designation, construction, and type (Table 1).
- 3.1.3 Whether tin, lead alloy, silver-coated, or nickel-coated (see 4.1).

3.1.4 For silver-coated conductors and nickel-coated conductors, class of coating (see 4.1), and when required, unannealed (see 4.2),

3.1.5 Desired constructions where alternates are given (Table 1, Type II and, 5.1, 6.1, and 6.2),

3.1.6 Package size (Section 12).

3.1.7 Special package marking if required (Section 11), and

3.1.8 Place of inspection (Section 10).

4. General Requirements

4.1 *Coating of Wires*—The coating of the solid conductors and the wires composing stranded conductors (before stranding) shall conform to the coating requirements of ASTM Specifications B33, B189, B298, and B355, as indicated on the purchase order.

¹ This specification is under the jurisdiction of ASTM Committee B01 on Electrical Conductors and is the direct responsibility of Subcommittee B01.04 on Conductors of Copper and Copper Alloys.

Current edition approved Oct. 15, 2012 May 15, 2017. Published November 2012 May 2017. Originally approved in 1954. Last previous edition approved in 20072012 as B286-07.B286-07 (2012). DOI: 10.1520/B0286-07R12.-10.1520/B0286-07R17.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's standard's Document Summary page on the ASTM website.

-					TABLE 1 Deta	ils of Conductor (Construction					
					Ту	pe I (Solid Conductors	<u></u>		(-	2)		
	Size		Nominal	Nominal		D-C Resistance at 20°C, Ω/1000 ft, max (Explanatory Note 2)						
	Designation, <u>AWG</u>		<u>Area,</u> cmils	Diameter, i		ealed Tin or Alloy Coated	Annealed Silver Coated	Class 2 Nickel ⁴	Class Nic		Class 27 Nickel	
	10 12 14 16 18 20 22 24 26 28 30	Conductor Construction		0.1019 0.0808 0.0641 0.0508 0.0403 0.0320 0.0253 0.0201 0.0159 0.0126 0.0100		1.06 1.69 2.68 4.26 6.78 10.7 17.2 27.2 44.5 70.8 114.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{r} 1.17 \\ 1.84 \\ 2.93 \\ 4.65 \\ \overline{7.39} \\ \overline{11.8} \\ 18.8 \\ 29.8 \\ 47.5 \\ \overline{75.4} \\ 120.0 \\ \end{array} $		1.44 2.28 3.63 5.77 9.17 14.6 23.3 36.9 58.9 107.0 149.0	
	Type II (Stranded Conductors) Conductor Construction D-C Resistance at 20°C, Ω/1000 ft, max (Explanatory Note 2)											
	-	Conductor								<u>0°C, Ω/1000 ft, max (Explanatory Note 2)</u>		
	Size Designation ^B	<u>Number</u> of Wires ^C	<u>Nominal</u> Diameter of Each Wire, in.	<u>Calculated</u> <u>Cross-</u> <u>Sectional</u> Area, cmils	Maximum Allowable Diameter, in	(Evelopet	Tin or	- <u>Anneale</u> Silvor	μin.	Class 10 Nickel	Class 27 Nickel	
	$\begin{array}{r} \underbrace{0000-2109} \\ \underline{000-1672} \\ \hline 00-1330 \\ \underline{0-1064} \\ 0-1045 \\ \hline 1-836 \\ 1-817^{E} \\ \underline{2-665} \\ 4-133^{E} \\ \hline 4-420 \\ \underline{6-133^{E}} \\ \hline 4-420 \\ \underline{6-133^{E}} \\ \hline 8-168 \\ 10-105 \\ \hline 10-104 \\ \hline 10-49^{E} \\ \hline 10-37^{E} \\ \underline{12-65} \\ \end{array}$	$\begin{array}{c} 2109^{F}\\ \hline 1672^{F}\\ \hline 1330^{F}\\ \hline 1064^{F}\\ \hline 1045^{F}\\ \hline 836^{F}\\ \hline 836^{F}\\ \hline 133^{F}\\ \hline 420^{G}\\ \hline 133^{F}\\ \hline 266^{G}\\ \hline 133^{F}\\ \hline 266^{G}\\ \hline 133^{F}\\ \hline 168^{G}\\ \hline 105^{G}\\ \hline 104^{H}\\ \hline 49^{G}\\ \hline 37^{F}\\ \hline 65^{H}\\ \hline \end{array}$	$\begin{array}{c} 0.0100\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0100\\ 0.0179\\ 0.0100\\ 0.0179\\ 0.0100\\ 0.0142\\ 0.0100\\ 0.0113\\ 0.0100\\ 1.0100\\ 0.0100\\ 0.0112\\ 0.0159\\ 0.0100\\ 0.000\\ 0$	$\begin{array}{c} 210 \ 900 \\ 167 \ 200 \\ 133 \ 000 \\ 106 \ 400 \\ 83 \ 600 \\ 83 \ 600 \\ 81 \ 700^{E} \\ 66 \ 500 \\ 42 \ 615^{E} \\ 42 \ 000 \\ 26 \ 818^{E} \\ 26 \ 600 \\ 16 \ 983^{E} \\ 26 \ 600 \\ 10 \ 500 \\ 10 \ 500 \\ 10 \ 500 \\ 10 \ 400 \\ 9 \ 880^{C} \\ 9 \ 354^{E} \\ 6 \ 500 \\ \end{array}$	0.635 0.545 0.486 0.435 0.382 0.382 0.342 0.274 0.275 0.274 0.275 0.275 0.270 0.227 0.275 0.270 0.227 0.275 0.270 0.173 0.177 0.130 0.132 0.115 0.099 Type	$max = \frac{1}{2}$	$\begin{array}{c} 0.0576\\ 0.0727\\ 0.0914\\ 0.114\\ 0.114\\ 0.114\\ 0.114\\ 0.145\\ 0.149\\ 0.183\\ 0.280\\ 0.289\\ 0.289\\ 0.289\\ 0.289\\ 0.289\\ 0.444\\ 0.457\\ 0.701\\ 0.289\\ 0.457\\ 0.701\\ 0.724\\ 1.15\\ 1.16\\ 1.21\\ 1.26\\ 1.85\\ 0.75\end{array}$	$\begin{array}{c} 0.0537\\ \hline 0.0677\\ \hline 0.085\\ \hline 0.106\\ \hline 0.108\\ \hline 0.139\\ \hline 0.139\\ \hline 0.170\\ \hline 0.263\\ \hline 0.270\\ \hline 0.263\\ \hline 0.270\\ \hline 0.263\\ \hline 0.270\\ \hline 0.426\\ \hline 0.661\\ \hline 0.674\\ \hline 1.07\\ \hline 1.08\\ \hline 1.14\\ \hline 1.19\\ \hline 1.73\\ \end{array}$	0.0705(2)	$\begin{array}{r} 0.0610\\ 0.0770\\ 0.0967\\ 0.121\\ 0.123\\ 0.154\\ 0.158\\ 0.194\\ 0.299\\ 0.306\\ 0.475\\ 0.484\\ 0.751\\ 0.751\\ 0.766\\ 1.21\\ 1.23\\ 1.29\\ 1.35\\ 1.96\\ \end{array}$	$\begin{array}{c} 0.0756\\ \hline 0.0954\\ \hline 0.120\\ \hline 0.150\\ \hline 0.153\\ \hline 0.191\\ \hline 0.195\\ \hline 0.240\\ \hline 0.371\\ \hline 0.380\\ \hline 0.589\\ \hline 0.600\\ \hline 0.930\\ \hline 0.949\\ \hline 1.50\\ \hline 1.52\\ \hline 1.60\\ \hline 1.67\\ \hline 2.43\\ \end{array}$	
	Conductor Construction D-C Resistance at 20°C, Ω/1000 ft, max (Explanatory Note								xplanatory Note 2)		
	<u>Size</u> Designation ^B	Number of Wires ^C	Nominal Diameter of Each Wire, in.	Calculated Cross- Sectional Area, cmils	Maximum Allowable Diameter, in. ^D	Length of Lay, in. (Explanatory <u>Note 2)</u>	Annealed <u>Tin or</u> Lead-Alloy <u>Coated</u>	Annealed Silver Coated	50 to 100 μin. of Nickel [/]	Class 10 Nickel	<u>Class 27</u> <u>Nickel</u>	
	$ \begin{array}{r} 12-37^{\textit{E}} \\ \hline 12-19^{\textit{E}} \\ \hline 14-41 \\ \hline 14-9^{\textit{E}} \\ \hline 16-26 \\ \hline 16-19^{\textit{E}} \\ \hline 18-26^{\textit{E}} \\ \hline 18-19^{\textit{E}} \\ \end{array} $	$\frac{37^{E}}{19^{J}}$ $\frac{19^{J}}{26^{H}}$ $\frac{19^{J}}{26^{H}}$ $\frac{19^{J}}{26^{H}}$ $\frac{19^{J}}{26^{H}}$	0.0126 0.0179 0.0100 0.0142 0.0100 0.0113 0.0080 0.0100	$ \frac{5 874^{E}}{6 088^{E}} \\ \frac{4 100}{3 831^{E}} \\ \frac{2 600}{2 426^{E}} \\ \frac{1 664^{E}}{1 900^{E}} $	0.091 0.093 0.081 0.073 0.062 0.059 0.050 0.052	0.90 to 1.45 0.90 to 1.45 0.80 to 1.35 0.80 to 1.15 0.60 to 0.90 0.60 to 0.90 0.50 to 0.70 0.50 to 0.70	2.01 1.92 2.94 3.05 4.59 4.82 7.20 6.22	1.89 1.81 2.74 2.87 4.27 4.54 6.71 5.79	$ \begin{array}{r} 1.97(2) \\ 1.88(2) \\ 2.85(2) \\ 2.99(2) \\ 4.45(2) \\ 4.73(2) \\ 7.14(4) \\ 6.03(2) \\ \end{array} $	$ \begin{array}{r} 2.15 \\ 2.05 \\ 3.11 \\ 3.26 \\ 4.86 \\ 5.15 \\ 7.63 \\ 6.58 \\ \end{array} $	2.66 2.55 3.85 4.05 6.02 6.39 9.45 8.16	

B286 - 07 (2017)

					ABLE 1 Continue	_					
	Conducto	r Construction			(1		D-C Resistance at 20°C, Ω/1000 ft, max (Explanatory Note 2)				
<u>Size</u> Designation ^B	Number of Wires ^C	<u>Nominal</u> <u>Diameter of</u> Each Wire, in.	<u>Calculated</u> <u>Cross-</u> Sectional Area, cmils	Maximum Allowable Diameter, in. ^D	Length of Lay, in. (Explanatory Note 2)	Annealed <u>Tin or</u> Lead-Alloy <u>Coated</u>	Annealed Silver Coated	50 to 100 μin. of Nickel [/]	<u>Class 10</u> <u>Nickel</u>	Class 27 Nickel	
$ \frac{18-7^{E}}{20-19^{E}} \\ \frac{20-19^{F}}{22-19^{E}} \\ \frac{22-7^{E}}{24-19^{E}} \\ \frac{24-7^{E}}{24-7^{E}} \\ \frac{24-7^{E}}{26-19^{E}} \\ \frac{26-7^{E}}{28-19^{E}} \\ \frac{28-7^{E}}{30-7^{E}} \\ 30-7^{E} $	7' 10' ^H 10' ^H 19' 7' 19' 7' 19' 7' 19' 7'	0.0159 0.0080 0.0126 0.0063 0.0100 0.0050 0.0080 0.0040 0.0063 0.0031 0.0031 0.0050 0.0040	$\begin{array}{c} \frac{1}{1} \frac{770^{E}}{1216^{E}} \\ \frac{1}{2} 000 \\ 1 \frac{111^{E}}{754^{E}} \\ 700^{E} \\ 475^{E} \\ 448^{E} \\ 304^{E} \\ 278^{E} \\ 183^{E} \\ 175^{E} \\ 112^{E} \end{array}$	0.050 0.042 0.040 0.039 0.033 0.031 0.027 0.025 0.022 0.020 0.017 0.016 0.013	$\begin{array}{c} 0.50 \text{ to } 0.70\\ \hline 0.45 \text{ to } 0.55\\ \hline 0.45 \text{ to } 0.55\\ \hline 0.45 \text{ to } 0.55\\ \hline 0.25 \text{ to } 0.43\\ \hline 0.25 \text{ to } 0.43\\ \hline 0.25 \text{ to } 0.35\\ \hline 0.25 \text{ to } 0.35\\ \hline 0.25 \text{ to } 0.30\\ \hline 0.$	$\begin{array}{c} 6.54\\ \hline 9.76\\ \hline 11.8\\ 10.4\\ \hline 15.9\\ \hline 25.4\\ \hline 26.2\\ \hline 40.1\\ \hline 42.6\\ \hline 67.7\\ \hline 68.2\\ \hline 108.0\\ \end{array}$	6.16 9.10 11.0 9.81 14.8 15.6 23.6 24.5 37.3 39.7 63.1 63.6 100.0	$\begin{array}{r} 6.42(2) \\ \hline 9.68(4) \\ 11.5(2) \\ 10.2(2) \\ \hline 15.7(4) \\ \hline 16.2(2) \\ 25.2(4) \\ 26.0(4) \\ 41.0(7) \\ 42.2(4) \\ \hline 69.3(7) \\ \hline 67.6(4) \\ 110.0(7) \end{array}$	7.00 10.3 12.5 11.1 16.8 17.7 26.9 27.8 42.4 45.1 71.7 72.2 114.0	8.67 12.8 15.5 13.8 20.8 21.9 33.3 34.4 52.6 55.9 88.8 89.5 141.0	
32–7 ^E	7 ^J	0.0031	67 ^g	0.011	0.10 to 0.30	182.0	170.0	186.0(7)	193.0	239.0	
⁴ Provides minimum o ³ These size designati ² The stranded conduc resistances are not ex	f 50 μin. of nicke ions are solely fo tor constructions ceeded.	el. or purposes of identif shown in this table p	ication. They shou	AS Ild not be confused noninsulated condu	with AWG sizes. ctors having the indica	ated cross-sectiona	al area. The number		nay vary slightly pr	ovided the specifi	

B286 - 07 (2017)

^D The maximum allowable diameters of these conductors are given here for guidance in making calculations regarded insulating material, etc. These diameters do not include allowance for distortion of the conductor during stranding and are not intended to be used as limiting values.

^E The cross-sectional areas of these conductor-size designations deviate by more than 2 per cent from the nominal areas of the standard AWG sizes as defined in Specification B258.

^F Nineteen member ropes.

^G Seven member ropes.

H Bunch-stranded.

The numbers in parentheses indicate the class of nickel coating required to meet resistance values tabulated. These classes appear in Specification B355.

^J Concentric-stranded.

†Editorially corrected.