

Designation: D4221 - 17

Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer¹

This standard is issued under the fixed designation D4221; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

- 1.1 This test method provides an indication of the natural dispersive characteristics of clay soils by comparing the amount of particles finer than 2-µm as determined by this method compared to the amount of particles finer than 2-µm as determined by Test Method D7928(1).² In order to do this comparison, two similar specimens must be obtained from the sample.
- 1.2 This test method follows the procedure given in Test Method D7928 with the exception that the soil slurry is not mechanically dispersed and no dispersing agent is added.
- 1.3 This test method is applicable only to soils where the position of the plasticity index versus liquid limit plots (Test Methods D4318) falls on or above the "A" line (Practice D2487) and more than 12 % of the soil fraction is finer than 2-µm as determined in accordance with Test Method D7928(2).
- 1.4 Since this test method may not identify all dispersive clay soils, other tests such as, pinhole dispersion (Test Methods D4647/D4647M), crumb (Test Methods D6572) (3-5) and the analysis of pore water extraction (Test Methods D4542) (4-7) may be performed individually or used together to help verify dispersion.
- 1.5 *Units*—The values stated in SI units are to be regarded as the standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this test method.
- $1.6\,$ All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.
- 1.6.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for

obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

- 1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health and environmental practices and determine the applicability of regulatory limitations prior to use.
- 1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:³
- D653 Terminology Relating to Soil, Rock, and Contained Fluids
- D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- D2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
- D2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)
- D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
- D4220/D4220M Practices for Preserving and Transporting Soil Samples
- D4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- D4542 Test Methods for Pore Water Extraction and Determination of the Soluble Salt Content of Soils by Refractometer

¹ This test method is under the jurisdiction of ASTM Committee D18 on Soil and Rock and is the direct responsibility of Subcommittee D18.06 on Physical-Chemical Interactions of Soil and Rock.

Current edition approved July 1, 2017. Published July 2017. Originally approved in 1983. Last previous edition approved in 2011 as D4221–11. DOI: 10.1520/ D4221-17.

² The boldface numbers in parentheses refer to the list of references appended to this standard.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

D4647/D4647M Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test

D6026 Practice for Using Significant Digits in Geotechnical Data

D6572 Test Methods for Determining Dispersive Characteristics of Clayey Soils by the Crumb Test

D6913 Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis

D7928 Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis

3. Terminology

- 3.1 Definitions:
- 3.1.1 For definitions of common technical terms used in this standard, refer to Terminology D653.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 *dispersive clays, n*—soils that deflocculate easily and rapidly without significant mechanical assistance in water of low-salt concentration.
- 3.2.1.1 *Discussion*—Such soils usually have a high proportion of their adsorptive capacity saturated with sodium cation although adsorbed lithium and magnesium may also play a role (6). Such soils also generally have a high shrink-swell potential, have low resistance to erosion, and have low permeability in an intact state.

4. Summary of Test Method

- 4.1 This test method is used to determine the percent dispersion of a soil. In order to calculate the percent dispersion, two similar specimens are obtained from a representative sample and then a sedimentation (hydrometer) analysis is performed on each specimen to determine the amount of particles finer than $2-\mu m$. The sedimentation analysis is performed following Test Method D7928 for both specimens, except that one of the specimens is de-aired and is not mechanically or chemically dispersed.
- 4.2 The percent dispersion is calculated by dividing the percent passing the 2- μ m size from the de-aired, not dispersed specimen by the percent passing the 2- μ m size from the specimen that was dispersed and by multiplying the result by 100.

5. Significance and Use

- 5.1 Dispersive clays are those which normally deflocculate when exposed to water of low-salt concentration, the opposite of aggregated clays that would remain flocculated in the same soil-water system (3, 4, 7). Generally, dispersive clays are highly erosive, possibly subject to high shrink-swell potential, may have lower shear strength, and have lower permeability rates than aggregated clays.
- 5.2 When the percent dispersion equals 100, it indicates a completely dispersive clay-size fraction. When the percent dispersion equals 0, it indicates completely nondispersive clay-size fraction.
- 5.3 Available data (1) indicates that the test method has about 85 % reliance in predicting dispersive performance (85 % of dispersive clays show more than 35 % dispersion).

5.4 Since this test method may not identify all dispersive clays, design decisions based solely on this test method may not be conservative. It is often run in conjunction with the crumb test (D6572) (4, 7), the pinhole test (D4647/D4647M), or the analysis of the pore water extract (D4542) (4, 7), or combination thereof, to identify possible dispersive clay behavior.

Note 1—The quality of the result produced by this standard is dependent on the competence of the personal performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depends on many factors; Practice D3740 provides a means of evaluating some of those factors.

6. Apparatus

- 6.1 Section 6 of Test Method D7928 describes the equipment and tools needed for performing the sedimentation (hydrometer) analysis portion of this standard.
- 6.2 *Container*—An airtight, glass or equivalent inert container with enough capacity to hold the minus No. 10 (2.0-mm) specimen(s).
- 6.3 Filtering Flask—A 500-mL filtering flask with a rubber stopper and a side tube capable of withstanding a vacuum.
- 6.4 Vacuum System—A vacuum pump or water aspirator capable of producing a vacuum between 508 and 635 mm of Hg on the vacuum gauge.

7. Reagents

- 7.1 Section 7 of Test Method D7928 describes the reagents needed for performing the mechanically and chemically dispersed sedimentation (hydrometer) analysis portion of this standard.
- 60.7.2 Distilled Water—Distilled or demineralized water with a pH between 5.5 and 7 is the only permissible test fluid for use in the sedimentation portion of the test. The use of tap water is not permitted.

8. Sampling

- 8.1 General—This test method does not address, in any detail, procurement of the sample. It is assumed the sample is obtained using appropriate methods and is representative of the material under evaluation. The testing agency must preserve all samples in accordance with Practice D4220/D4220M, Group B, except if the as-received sample does not meet those requirements. In which case, the water content of the sample does not have to be maintained. Section 9 of Test Method D6913 gives additional information regarding sampling from different sources.
- 8.2 Follow the steps given in 8.4 of Test Method D7928, including the mass requirements given in Table 1 of that standard, to obtain the reduced sample from which the test specimens are to be obtained.

9. Preparation of the Test Specimens

9.1 Specimen Procurement—This standard presents two preparation methods to obtain the sedimentation specimens: